I. Oganezova, D. Pommerenke, J. Zhou, K. Ghosh, A. Hosseinbeig, J. Lee, N. Tsitskishvili, T. Jobava, Z. Sukhiashvili, R. Jobava
{"title":"人体阻抗建模ESD仿真","authors":"I. Oganezova, D. Pommerenke, J. Zhou, K. Ghosh, A. Hosseinbeig, J. Lee, N. Tsitskishvili, T. Jobava, Z. Sukhiashvili, R. Jobava","doi":"10.1109/ISEMC.2017.8077944","DOIUrl":null,"url":null,"abstract":"Motivated by understanding the ESD-induced currents from body-worn, wire and hose connected medical equipment is exposed to, a computer simulation is presented to estimate the impedance of a human body relative to ground. This 3D model is the basis for transient field calculation. A Method of Moments (MoM) frequency domain solution is transformed into time domain via IFFT for further circuit level time domain simulations. The human body is modeled as a homogeneous dielectric with frequency-dependent complex permittivity. Dependence of the impedance on the position of discharge and posture of the human body is investigated. The simulation resultsare compared with measurements and demonstrate capturing of general tendencies of measured curves.","PeriodicalId":328499,"journal":{"name":"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Body Impedance Modelling for ESD simulations\",\"authors\":\"I. Oganezova, D. Pommerenke, J. Zhou, K. Ghosh, A. Hosseinbeig, J. Lee, N. Tsitskishvili, T. Jobava, Z. Sukhiashvili, R. Jobava\",\"doi\":\"10.1109/ISEMC.2017.8077944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by understanding the ESD-induced currents from body-worn, wire and hose connected medical equipment is exposed to, a computer simulation is presented to estimate the impedance of a human body relative to ground. This 3D model is the basis for transient field calculation. A Method of Moments (MoM) frequency domain solution is transformed into time domain via IFFT for further circuit level time domain simulations. The human body is modeled as a homogeneous dielectric with frequency-dependent complex permittivity. Dependence of the impedance on the position of discharge and posture of the human body is investigated. The simulation resultsare compared with measurements and demonstrate capturing of general tendencies of measured curves.\",\"PeriodicalId\":328499,\"journal\":{\"name\":\"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2017.8077944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2017.8077944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Body Impedance Modelling for ESD simulations
Motivated by understanding the ESD-induced currents from body-worn, wire and hose connected medical equipment is exposed to, a computer simulation is presented to estimate the impedance of a human body relative to ground. This 3D model is the basis for transient field calculation. A Method of Moments (MoM) frequency domain solution is transformed into time domain via IFFT for further circuit level time domain simulations. The human body is modeled as a homogeneous dielectric with frequency-dependent complex permittivity. Dependence of the impedance on the position of discharge and posture of the human body is investigated. The simulation resultsare compared with measurements and demonstrate capturing of general tendencies of measured curves.