支持向量机核

Khaled S. Refaat
{"title":"支持向量机核","authors":"Khaled S. Refaat","doi":"10.1109/EURCON.2009.5167918","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the so-called “SVM'ed-kernel function” and its use in SVM classification problems. This kernel function is itself a support vector machine classifier that is learned statistically from data. We show that the new kernel manages to change the classical methodology of defining a feature vector for each pattern. One will only need to define features representing the similarity between two patterns allowing many details to be captured in a concise way. The new proposed kernel shows very promising results. It opens the door for new feature definitions that could be created in various machine learning problems where similarity between patterns can be formulated more suitably.","PeriodicalId":256285,"journal":{"name":"IEEE EUROCON 2009","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The support vector machined kernel\",\"authors\":\"Khaled S. Refaat\",\"doi\":\"10.1109/EURCON.2009.5167918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the so-called “SVM'ed-kernel function” and its use in SVM classification problems. This kernel function is itself a support vector machine classifier that is learned statistically from data. We show that the new kernel manages to change the classical methodology of defining a feature vector for each pattern. One will only need to define features representing the similarity between two patterns allowing many details to be captured in a concise way. The new proposed kernel shows very promising results. It opens the door for new feature definitions that could be created in various machine learning problems where similarity between patterns can be formulated more suitably.\",\"PeriodicalId\":256285,\"journal\":{\"name\":\"IEEE EUROCON 2009\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2009\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURCON.2009.5167918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2009.5167918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了所谓的“支持向量机核函数”及其在支持向量机分类问题中的应用。这个核函数本身就是一个从数据中统计学习的支持向量机分类器。我们表明,新的内核设法改变了为每个模式定义特征向量的经典方法。我们只需要定义表示两个模式之间相似性的特征,从而以一种简洁的方式捕获许多细节。新提出的内核显示了非常有希望的结果。它为可以在各种机器学习问题中创建的新特征定义打开了大门,在这些问题中,模式之间的相似性可以更合适地表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The support vector machined kernel
In this paper, we propose the so-called “SVM'ed-kernel function” and its use in SVM classification problems. This kernel function is itself a support vector machine classifier that is learned statistically from data. We show that the new kernel manages to change the classical methodology of defining a feature vector for each pattern. One will only need to define features representing the similarity between two patterns allowing many details to be captured in a concise way. The new proposed kernel shows very promising results. It opens the door for new feature definitions that could be created in various machine learning problems where similarity between patterns can be formulated more suitably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信