从自然语言规范自动生成断言

S. Frederiksen, John J. Aromando, M. Hsiao
{"title":"从自然语言规范自动生成断言","authors":"S. Frederiksen, John J. Aromando, M. Hsiao","doi":"10.1109/ITC44778.2020.9325264","DOIUrl":null,"url":null,"abstract":"We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Assertion Generation from Natural Language Specifications\",\"authors\":\"S. Frederiksen, John J. Aromando, M. Hsiao\",\"doi\":\"10.1109/ITC44778.2020.9325264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.\",\"PeriodicalId\":251504,\"journal\":{\"name\":\"2020 IEEE International Test Conference (ITC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC44778.2020.9325264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们探索当代自然语言处理(NLP)技术,用于将设计文档中的NL规范直接转换为类似于时间逻辑的中间表示(IR)。通常,使用NLP进行断言生成的尝试依赖于限制性的句子格式和语法,并且难以处理新的句子格式。为了解决这些问题,我们首先实现了一个系统,该系统使用常识性映射将输入句子处理成规范化的形式。然后根据框架中包含的信息和上下文,使用框架语义将规范化的句子转换成IR。通过这种方式,我们能够处理来自真实数据表的大量句子,允许使用时态条件、属性语句和复合语句的复杂格式;所有顺序都是不可知论的。我们的系统也可以通过修改外部而不是内部的常识性知识库来轻松扩展,以处理新的句子格式,而不需要更改代码或熟悉所使用的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Assertion Generation from Natural Language Specifications
We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信