T. Katoh, N. Nishi, M. Fukagawa, H. Ueno, S. Sugiyama
{"title":"用同步辐射蚀刻直接写入三维微加工","authors":"T. Katoh, N. Nishi, M. Fukagawa, H. Ueno, S. Sugiyama","doi":"10.1109/MEMSYS.2000.838578","DOIUrl":null,"url":null,"abstract":"This paper presents rapid three-dimensional microfabrication technologies for PTFE by direct writing with the TIEGA process, a LIGA-like process which replaces hard X-ray lithography with synchrotron radiation (SR) direct photo-etching. The etching rates of this process are of the order of 6-100 /spl mu/m/min, depending on the photon flux of the SR light. An X-ray lathe has been modified into an SR etching lathe to form cylindrical, helical, pyramidal, ellipsoidal, and other nonplanar objects. A metallic wire covered with a PTFE sheet is rotated and/or moved while being irradiated with SR through a mask. Moreover, direct writing without using any masks has been developed, by combining a scanning stage with a high degree of freedom under an He atmosphere, for creating any microstructure. The capabilities of these technologies and initial fabrication results are described here.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"708 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Direct writing for three-dimensional microfabrication using synchrotron radiation etching\",\"authors\":\"T. Katoh, N. Nishi, M. Fukagawa, H. Ueno, S. Sugiyama\",\"doi\":\"10.1109/MEMSYS.2000.838578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents rapid three-dimensional microfabrication technologies for PTFE by direct writing with the TIEGA process, a LIGA-like process which replaces hard X-ray lithography with synchrotron radiation (SR) direct photo-etching. The etching rates of this process are of the order of 6-100 /spl mu/m/min, depending on the photon flux of the SR light. An X-ray lathe has been modified into an SR etching lathe to form cylindrical, helical, pyramidal, ellipsoidal, and other nonplanar objects. A metallic wire covered with a PTFE sheet is rotated and/or moved while being irradiated with SR through a mask. Moreover, direct writing without using any masks has been developed, by combining a scanning stage with a high degree of freedom under an He atmosphere, for creating any microstructure. The capabilities of these technologies and initial fabrication results are described here.\",\"PeriodicalId\":251857,\"journal\":{\"name\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"volume\":\"708 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2000.838578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct writing for three-dimensional microfabrication using synchrotron radiation etching
This paper presents rapid three-dimensional microfabrication technologies for PTFE by direct writing with the TIEGA process, a LIGA-like process which replaces hard X-ray lithography with synchrotron radiation (SR) direct photo-etching. The etching rates of this process are of the order of 6-100 /spl mu/m/min, depending on the photon flux of the SR light. An X-ray lathe has been modified into an SR etching lathe to form cylindrical, helical, pyramidal, ellipsoidal, and other nonplanar objects. A metallic wire covered with a PTFE sheet is rotated and/or moved while being irradiated with SR through a mask. Moreover, direct writing without using any masks has been developed, by combining a scanning stage with a high degree of freedom under an He atmosphere, for creating any microstructure. The capabilities of these technologies and initial fabrication results are described here.