基于门波形机器学习的功率器件退化估计

Hiromu Yamasaki, K. Miyazaki, Yang Lo, A. M. Mahfuzul Islam, Katsuhiro Hata, T. Sakurai, M. Takamiya
{"title":"基于门波形机器学习的功率器件退化估计","authors":"Hiromu Yamasaki, K. Miyazaki, Yang Lo, A. M. Mahfuzul Islam, Katsuhiro Hata, T. Sakurai, M. Takamiya","doi":"10.23919/SISPAD49475.2020.9241607","DOIUrl":null,"url":null,"abstract":"The emitter resistance (RE), the junction temperature (TJ), the collector current (IC), and the threshold voltage (VTH) of power devices are key parameters that determine the reliability of power devices. Adding dedicated sensors to measure the key parameters, however, will increase the cost of the power converters. To solve the problem, power device degradation estimation methods by the machine learning of gate waveforms are proposed. Two methods are shown in this paper. First, in order to detect the bond wire lift-off of power devices, the estimation of the number of the connected bond wires using the linear regression of two feature points extracted from the gate waveforms of a SiC MOSFET is shown using SPICE simulations. Then, in order to detect the power device degradation, the estimation of R E, TJ, IC, and VTH using the convolutional neural network (CNN) with the gate waveforms of an IGBT for input is shown using both simulations and measurements.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Device Degradation Estimation by Machine Learning of Gate Waveforms\",\"authors\":\"Hiromu Yamasaki, K. Miyazaki, Yang Lo, A. M. Mahfuzul Islam, Katsuhiro Hata, T. Sakurai, M. Takamiya\",\"doi\":\"10.23919/SISPAD49475.2020.9241607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emitter resistance (RE), the junction temperature (TJ), the collector current (IC), and the threshold voltage (VTH) of power devices are key parameters that determine the reliability of power devices. Adding dedicated sensors to measure the key parameters, however, will increase the cost of the power converters. To solve the problem, power device degradation estimation methods by the machine learning of gate waveforms are proposed. Two methods are shown in this paper. First, in order to detect the bond wire lift-off of power devices, the estimation of the number of the connected bond wires using the linear regression of two feature points extracted from the gate waveforms of a SiC MOSFET is shown using SPICE simulations. Then, in order to detect the power device degradation, the estimation of R E, TJ, IC, and VTH using the convolutional neural network (CNN) with the gate waveforms of an IGBT for input is shown using both simulations and measurements.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

功率器件的发射极电阻(RE)、结温(TJ)、集电极电流(IC)和阈值电压(VTH)是决定功率器件可靠性的关键参数。然而,增加专用传感器来测量关键参数将增加功率转换器的成本。为了解决这一问题,提出了基于门波形机器学习的功率器件退化估计方法。本文给出了两种方法。首先,为了检测功率器件的键合线上升,使用SPICE模拟显示了使用从SiC MOSFET的栅极波形中提取的两个特征点的线性回归来估计连接的键合线的数量。然后,为了检测功率器件退化,使用卷积神经网络(CNN)估计R E, TJ, IC和VTH,并通过仿真和测量显示输入IGBT的门波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Device Degradation Estimation by Machine Learning of Gate Waveforms
The emitter resistance (RE), the junction temperature (TJ), the collector current (IC), and the threshold voltage (VTH) of power devices are key parameters that determine the reliability of power devices. Adding dedicated sensors to measure the key parameters, however, will increase the cost of the power converters. To solve the problem, power device degradation estimation methods by the machine learning of gate waveforms are proposed. Two methods are shown in this paper. First, in order to detect the bond wire lift-off of power devices, the estimation of the number of the connected bond wires using the linear regression of two feature points extracted from the gate waveforms of a SiC MOSFET is shown using SPICE simulations. Then, in order to detect the power device degradation, the estimation of R E, TJ, IC, and VTH using the convolutional neural network (CNN) with the gate waveforms of an IGBT for input is shown using both simulations and measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信