利用TFET单向性和低vdd操作的新颖电路实现高性能异构TFET/CMOS逻辑

D. Morris, Kaushik Vaidyanathan, U. Avci, Huichu Liu, T. Karnik, I. Young
{"title":"利用TFET单向性和低vdd操作的新颖电路实现高性能异构TFET/CMOS逻辑","authors":"D. Morris, Kaushik Vaidyanathan, U. Avci, Huichu Liu, T. Karnik, I. Young","doi":"10.1109/VLSIT.2016.7573442","DOIUrl":null,"url":null,"abstract":"Tunneling FETs (TFETs) offer better low-VDD performance than CMOS but lack performance above 0.5V VDD due to low drive current and VDD-dependent parasitic leakages. At low-VDD, TFET's higher energy efficiency enables 2X parallel performance for power constrained systems. For applications less amenable to parallelization, newly proposed circuits improve energy/op, performance and area by not only using TFET's steep sub-threshold swing, but also utilizing its asymmetric IDS-VDS characteristic. Design synthesis with sub-5nm node TFETs, MOSFETs and interconnects is used to assess trade-offs in industry logic blocks. In addition to a 44% energy reduction over CMOS circuits, novel TFET circuits improve dynamic energy by 32% and performance by 13% at logic cell level (4% and 10% respectively at synthesized logic block). Even with these benefits, single-threaded CPUs require CMOS logic's high performance. In this case, heterogeneous TFET/CMOS logic with low-overhead level-shifters improves performance 50% while reducing energy 42% for non-critical performance logic.","PeriodicalId":129300,"journal":{"name":"2016 IEEE Symposium on VLSI Technology","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Enabling high-performance heterogeneous TFET/CMOS logic with novel circuits using TFET unidirectionality and low-VDD operation\",\"authors\":\"D. Morris, Kaushik Vaidyanathan, U. Avci, Huichu Liu, T. Karnik, I. Young\",\"doi\":\"10.1109/VLSIT.2016.7573442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunneling FETs (TFETs) offer better low-VDD performance than CMOS but lack performance above 0.5V VDD due to low drive current and VDD-dependent parasitic leakages. At low-VDD, TFET's higher energy efficiency enables 2X parallel performance for power constrained systems. For applications less amenable to parallelization, newly proposed circuits improve energy/op, performance and area by not only using TFET's steep sub-threshold swing, but also utilizing its asymmetric IDS-VDS characteristic. Design synthesis with sub-5nm node TFETs, MOSFETs and interconnects is used to assess trade-offs in industry logic blocks. In addition to a 44% energy reduction over CMOS circuits, novel TFET circuits improve dynamic energy by 32% and performance by 13% at logic cell level (4% and 10% respectively at synthesized logic block). Even with these benefits, single-threaded CPUs require CMOS logic's high performance. In this case, heterogeneous TFET/CMOS logic with low-overhead level-shifters improves performance 50% while reducing energy 42% for non-critical performance logic.\",\"PeriodicalId\":129300,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Technology\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2016.7573442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2016.7573442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

隧道效应管(tfet)提供比CMOS更好的低VDD性能,但由于低驱动电流和VDD相关的寄生泄漏,在0.5V VDD以上缺乏性能。在低vdd下,TFET的高能效使功率受限系统的并行性能达到2倍。对于不太适合并行化的应用,新提出的电路不仅利用了ttfet的陡峭亚阈值摆幅,而且利用了其不对称IDS-VDS特性,从而提高了能量/op、性能和面积。采用sub-5nm节点tfet、mosfet和互连的设计综合用于评估工业逻辑块中的权衡。除了比CMOS电路减少44%的能量外,新型TFET电路在逻辑单元水平上提高了32%的动态能量和13%的性能(在合成逻辑块上分别提高了4%和10%)。即使有这些好处,单线程cpu也需要CMOS逻辑的高性能。在这种情况下,具有低开销电平移位器的异构TFET/CMOS逻辑可将性能提高50%,同时将非关键性能逻辑的能量降低42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling high-performance heterogeneous TFET/CMOS logic with novel circuits using TFET unidirectionality and low-VDD operation
Tunneling FETs (TFETs) offer better low-VDD performance than CMOS but lack performance above 0.5V VDD due to low drive current and VDD-dependent parasitic leakages. At low-VDD, TFET's higher energy efficiency enables 2X parallel performance for power constrained systems. For applications less amenable to parallelization, newly proposed circuits improve energy/op, performance and area by not only using TFET's steep sub-threshold swing, but also utilizing its asymmetric IDS-VDS characteristic. Design synthesis with sub-5nm node TFETs, MOSFETs and interconnects is used to assess trade-offs in industry logic blocks. In addition to a 44% energy reduction over CMOS circuits, novel TFET circuits improve dynamic energy by 32% and performance by 13% at logic cell level (4% and 10% respectively at synthesized logic block). Even with these benefits, single-threaded CPUs require CMOS logic's high performance. In this case, heterogeneous TFET/CMOS logic with low-overhead level-shifters improves performance 50% while reducing energy 42% for non-critical performance logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信