{"title":"竖琴演奏者的前臂肌肉活动","authors":"D Chadefaux, C Pothrat, S Shayegan, J-L Le Carrou","doi":"10.1080/10255842.2023.2258252","DOIUrl":null,"url":null,"abstract":"<p><p>The practice of a musical instrument requires fine dexterity, repetitive, fast, and precise movements, as well as important efforts to set the instrument into vibration, while adopting postures often unnatural for the human body. As a result, musicians are often subject to pain and musculoskeletal disorders. In the case of plucked string instruments and especially the concert harp, the plucking force is directly related to the strings' tension. Consequently, the choice of the strings has to be made based on both, the musician feel while playing, and the musculoskeletal consequences. This paper investigates how the string properties and the playing dynamics affect the finger and wrist muscle activity during harp playing. This study first emphasized the noteworthy recruitment of the flexor and extensor muscles (42% and 29% of MVC, respectively). Findings outlined further that the fingering choice, the adopted playing dynamics and the string's material govern the muscular activity level and the playing control. Such results are a first step to better understand how the harp ergonomics may affect the player's integrity and help them decide the most suitable stringing for their practice.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forearm muscles activity of harp players.\",\"authors\":\"D Chadefaux, C Pothrat, S Shayegan, J-L Le Carrou\",\"doi\":\"10.1080/10255842.2023.2258252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The practice of a musical instrument requires fine dexterity, repetitive, fast, and precise movements, as well as important efforts to set the instrument into vibration, while adopting postures often unnatural for the human body. As a result, musicians are often subject to pain and musculoskeletal disorders. In the case of plucked string instruments and especially the concert harp, the plucking force is directly related to the strings' tension. Consequently, the choice of the strings has to be made based on both, the musician feel while playing, and the musculoskeletal consequences. This paper investigates how the string properties and the playing dynamics affect the finger and wrist muscle activity during harp playing. This study first emphasized the noteworthy recruitment of the flexor and extensor muscles (42% and 29% of MVC, respectively). Findings outlined further that the fingering choice, the adopted playing dynamics and the string's material govern the muscular activity level and the playing control. Such results are a first step to better understand how the harp ergonomics may affect the player's integrity and help them decide the most suitable stringing for their practice.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2258252\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2258252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The practice of a musical instrument requires fine dexterity, repetitive, fast, and precise movements, as well as important efforts to set the instrument into vibration, while adopting postures often unnatural for the human body. As a result, musicians are often subject to pain and musculoskeletal disorders. In the case of plucked string instruments and especially the concert harp, the plucking force is directly related to the strings' tension. Consequently, the choice of the strings has to be made based on both, the musician feel while playing, and the musculoskeletal consequences. This paper investigates how the string properties and the playing dynamics affect the finger and wrist muscle activity during harp playing. This study first emphasized the noteworthy recruitment of the flexor and extensor muscles (42% and 29% of MVC, respectively). Findings outlined further that the fingering choice, the adopted playing dynamics and the string's material govern the muscular activity level and the playing control. Such results are a first step to better understand how the harp ergonomics may affect the player's integrity and help them decide the most suitable stringing for their practice.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.