fbg传感器在组织插入中的针形预测研究。

Dimitri A Lezcano, Min Jung Kim, Iulian I Iordachita, Jin Seob Kim
{"title":"fbg传感器在组织插入中的针形预测研究。","authors":"Dimitri A Lezcano,&nbsp;Min Jung Kim,&nbsp;Iulian I Iordachita,&nbsp;Jin Seob Kim","doi":"10.1109/iros47612.2022.9981856","DOIUrl":null,"url":null,"abstract":"<p><p>Complex needle shape prediction remains an issue for planning of surgical interventions of flexible needles. In this paper, we validate a theoretical method for flexible needle shape prediction allowing for non-uniform curvatures, extending upon a previous sensor-based model which combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod to determine and predict the 3D needle shape during insertion. We evaluate the model's effectiveness in single-layer isotropic tissue for shape sensing and shape prediction capabilities. Experiments on a four-active area, FBG-sensorized needle were performed in varying single-layer isotropic tissues under stereo vision to provide 3D ground truth of the needle shape. The results validate a viable 3D needle shape prediction model accounting for non-uniform curvatures in flexible needles with mean needle shape sensing and prediction root-mean-square errors of 0.479 mm and 0.892 mm, respectively.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2022 ","pages":"3505-3511"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832576/pdf/nihms-1861312.pdf","citationCount":"1","resultStr":"{\"title\":\"Toward FBG-Sensorized Needle Shape Prediction in Tissue Insertions.\",\"authors\":\"Dimitri A Lezcano,&nbsp;Min Jung Kim,&nbsp;Iulian I Iordachita,&nbsp;Jin Seob Kim\",\"doi\":\"10.1109/iros47612.2022.9981856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complex needle shape prediction remains an issue for planning of surgical interventions of flexible needles. In this paper, we validate a theoretical method for flexible needle shape prediction allowing for non-uniform curvatures, extending upon a previous sensor-based model which combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod to determine and predict the 3D needle shape during insertion. We evaluate the model's effectiveness in single-layer isotropic tissue for shape sensing and shape prediction capabilities. Experiments on a four-active area, FBG-sensorized needle were performed in varying single-layer isotropic tissues under stereo vision to provide 3D ground truth of the needle shape. The results validate a viable 3D needle shape prediction model accounting for non-uniform curvatures in flexible needles with mean needle shape sensing and prediction root-mean-square errors of 0.479 mm and 0.892 mm, respectively.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2022 \",\"pages\":\"3505-3511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832576/pdf/nihms-1861312.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iros47612.2022.9981856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iros47612.2022.9981856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

复杂的针形预测仍然是柔性针手术干预计划的一个问题。在本文中,我们验证了一种允许非均匀曲率的柔性针形预测的理论方法,该方法扩展了先前基于传感器的模型,该模型结合了光纤布拉格光栅(FBG)传感器的曲率测量和不可扩展弹性杆的力学,以确定和预测插入过程中的三维针形。我们评估了该模型在单层各向同性组织中形状感知和形状预测能力的有效性。在立体视觉下,在不同的单层各向同性组织中进行了四活跃区域实验,以提供针形的三维地面真实性。结果验证了考虑柔性针非均匀曲率的三维针形预测模型的可行性,平均针形感知和预测均方根误差分别为0.479 mm和0.892 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward FBG-Sensorized Needle Shape Prediction in Tissue Insertions.

Complex needle shape prediction remains an issue for planning of surgical interventions of flexible needles. In this paper, we validate a theoretical method for flexible needle shape prediction allowing for non-uniform curvatures, extending upon a previous sensor-based model which combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod to determine and predict the 3D needle shape during insertion. We evaluate the model's effectiveness in single-layer isotropic tissue for shape sensing and shape prediction capabilities. Experiments on a four-active area, FBG-sensorized needle were performed in varying single-layer isotropic tissues under stereo vision to provide 3D ground truth of the needle shape. The results validate a viable 3D needle shape prediction model accounting for non-uniform curvatures in flexible needles with mean needle shape sensing and prediction root-mean-square errors of 0.479 mm and 0.892 mm, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信