Hanling Wang , Xianzhuo Meng , Li Yao , Qian Wu , Bangben Yao , Zhaoran Chen , Jianguo Xu , Wei Chen
{"title":"在微阵列芯片PCR导向的微流控横向流动条带装置上精确分子识别不同的肉类掺假而不携带污染物","authors":"Hanling Wang , Xianzhuo Meng , Li Yao , Qian Wu , Bangben Yao , Zhaoran Chen , Jianguo Xu , Wei Chen","doi":"10.1016/j.fochms.2023.100180","DOIUrl":null,"url":null,"abstract":"<div><p>Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (T<sup>C</sup> line, T<sup>D</sup> line, T<sup>P</sup> line, or T<sup>B</sup> line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"7 ","pages":"Article 100180"},"PeriodicalIF":4.1000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471925/pdf/","citationCount":"1","resultStr":"{\"title\":\"Accurate molecular identification of different meat adulterations without carryover contaminations on a microarray chip PCR-directed microfluidic lateral flow strip device\",\"authors\":\"Hanling Wang , Xianzhuo Meng , Li Yao , Qian Wu , Bangben Yao , Zhaoran Chen , Jianguo Xu , Wei Chen\",\"doi\":\"10.1016/j.fochms.2023.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (T<sup>C</sup> line, T<sup>D</sup> line, T<sup>P</sup> line, or T<sup>B</sup> line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"7 \",\"pages\":\"Article 100180\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471925/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566223000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566223000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Accurate molecular identification of different meat adulterations without carryover contaminations on a microarray chip PCR-directed microfluidic lateral flow strip device
Meat adulteration-based food fraud has recently become one of the global major economical, illegal, religious, and public health concerns. In this work, we developed a microarray chip polymerase chain reaction (PCR)-directed microfluidic lateral flow strip (LFS) device that facilitates the accurate and simultaneous identification of beef adulterated with chicken, duck, and pork, especially in processed beef products. To realize this goal, four pairs of amplification primers were designed and applied for specifically amplifying genomic DNA extracted from mixed meat powders in microarray chip. With the prominent advantage of this device lies in the flexible combination and integration of sample loading, detection, and reporting in microstructures, all the DNA amplicons can be individually visualized on the LFS unit, leading to the appearance of test lines (TC line, TD line, TP line, or TB line) as well as the control line (C line) for the species identification and quantification in beef products. Based on this new method, the adulterants were successfully distinguished and identified in mixtures down to 0.01% (wt.%) while the carryover aerogel contamination in routine molecular diagnostic laboratories was effectively avoided. The practicability, accuracy, and reliability of the device were further confirmed by using real-time PCR as a gold standard control on the successful identification of 50 processed ground meat samples sourced from local markets. The method and device proposed herein could be a useful tool for on-site identification of food authentication.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.