Yan Zeng, Bin Ouyang, Jue Liu, Young-Woon Byeon, Zijian Cai, Lincoln J. Miara, Yan Wang, Gerbrand Ceder
{"title":"提高离子导电性的高熵机制","authors":"Yan Zeng, Bin Ouyang, Jue Liu, Young-Woon Byeon, Zijian Cai, Lincoln J. Miara, Yan Wang, Gerbrand Ceder","doi":"10.1126/science.abq1346","DOIUrl":null,"url":null,"abstract":"<div >Advances in solid-state batteries have primarily been driven by the discovery of superionic conducting structural frameworks that function as solid electrolytes. We demonstrate the ability of high-entropy metal cation mixes to improve ionic conductivity in a compound, which leads to less reliance on specific chemistries and enhanced synthesizability. The local distortions introduced into high-entropy materials give rise to an overlapping distribution of site energies for the alkali ions so that they can percolate with low activation energy. Experiments verify that high entropy leads to orders-of-magnitude higher ionic conductivities in lithium (Li)–sodium (Na) superionic conductor (Li-NASICON), sodium NASICON (Na-NASICON), and Li-garnet structures, even at fixed alkali content. We provide insight into selecting the optimal distortion and designing high-entropy superionic conductors across the vast compositional space.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"378 6626","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"High-entropy mechanism to boost ionic conductivity\",\"authors\":\"Yan Zeng, Bin Ouyang, Jue Liu, Young-Woon Byeon, Zijian Cai, Lincoln J. Miara, Yan Wang, Gerbrand Ceder\",\"doi\":\"10.1126/science.abq1346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Advances in solid-state batteries have primarily been driven by the discovery of superionic conducting structural frameworks that function as solid electrolytes. We demonstrate the ability of high-entropy metal cation mixes to improve ionic conductivity in a compound, which leads to less reliance on specific chemistries and enhanced synthesizability. The local distortions introduced into high-entropy materials give rise to an overlapping distribution of site energies for the alkali ions so that they can percolate with low activation energy. Experiments verify that high entropy leads to orders-of-magnitude higher ionic conductivities in lithium (Li)–sodium (Na) superionic conductor (Li-NASICON), sodium NASICON (Na-NASICON), and Li-garnet structures, even at fixed alkali content. We provide insight into selecting the optimal distortion and designing high-entropy superionic conductors across the vast compositional space.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"378 6626\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.abq1346\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.abq1346","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
High-entropy mechanism to boost ionic conductivity
Advances in solid-state batteries have primarily been driven by the discovery of superionic conducting structural frameworks that function as solid electrolytes. We demonstrate the ability of high-entropy metal cation mixes to improve ionic conductivity in a compound, which leads to less reliance on specific chemistries and enhanced synthesizability. The local distortions introduced into high-entropy materials give rise to an overlapping distribution of site energies for the alkali ions so that they can percolate with low activation energy. Experiments verify that high entropy leads to orders-of-magnitude higher ionic conductivities in lithium (Li)–sodium (Na) superionic conductor (Li-NASICON), sodium NASICON (Na-NASICON), and Li-garnet structures, even at fixed alkali content. We provide insight into selecting the optimal distortion and designing high-entropy superionic conductors across the vast compositional space.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.