{"title":"用于触觉应用的基于宏纤维复合材料的触觉器。","authors":"Alain Boldini;John-Ross Rizzo;Maurizio Porfiri","doi":"10.1109/TOH.2023.3308789","DOIUrl":null,"url":null,"abstract":"Haptic technology is a critical component of human-computer interfaces. Traditional haptic actuators are often unable to provide the broad frequency range and latency that is required in many advanced applications. To address this problem, we propose a new type of tactor based on macro-fiber composites (MFCs), composites of piezoelectric fibers. We propose a physics-based model for the actuation of the tactors, calibrated and validated through experiments. As our tactors are intended for haptic applications, we consider the role of skin on their response, an aspect seldom analyzed in the literature. In our experiments, we simulate the presence of the skin with a rubber membrane in contact with the tactor, with varying pre-stretch, mimicking different indentations of the tactor on the skin. The MFC-based tactor can always generate vibration amplitudes higher than skin discrimination thresholds, over the range of frequencies of interest for haptics, with a latency much smaller than traditional actuators. We theoretically investigate the effect of the skin on tactor vibrations, highlighting the individual roles of skin stiffness and damping and their combined effect across a series of pre-stretches. Our tactor shows promise in haptic applications, including assistive technologies and real-time feedback systems for training, safety, and monitoring.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"16 3","pages":"436-448"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Macro-Fiber Composite-Based Tactors for Haptic Applications\",\"authors\":\"Alain Boldini;John-Ross Rizzo;Maurizio Porfiri\",\"doi\":\"10.1109/TOH.2023.3308789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Haptic technology is a critical component of human-computer interfaces. Traditional haptic actuators are often unable to provide the broad frequency range and latency that is required in many advanced applications. To address this problem, we propose a new type of tactor based on macro-fiber composites (MFCs), composites of piezoelectric fibers. We propose a physics-based model for the actuation of the tactors, calibrated and validated through experiments. As our tactors are intended for haptic applications, we consider the role of skin on their response, an aspect seldom analyzed in the literature. In our experiments, we simulate the presence of the skin with a rubber membrane in contact with the tactor, with varying pre-stretch, mimicking different indentations of the tactor on the skin. The MFC-based tactor can always generate vibration amplitudes higher than skin discrimination thresholds, over the range of frequencies of interest for haptics, with a latency much smaller than traditional actuators. We theoretically investigate the effect of the skin on tactor vibrations, highlighting the individual roles of skin stiffness and damping and their combined effect across a series of pre-stretches. Our tactor shows promise in haptic applications, including assistive technologies and real-time feedback systems for training, safety, and monitoring.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"16 3\",\"pages\":\"436-448\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10230316/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10230316/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Macro-Fiber Composite-Based Tactors for Haptic Applications
Haptic technology is a critical component of human-computer interfaces. Traditional haptic actuators are often unable to provide the broad frequency range and latency that is required in many advanced applications. To address this problem, we propose a new type of tactor based on macro-fiber composites (MFCs), composites of piezoelectric fibers. We propose a physics-based model for the actuation of the tactors, calibrated and validated through experiments. As our tactors are intended for haptic applications, we consider the role of skin on their response, an aspect seldom analyzed in the literature. In our experiments, we simulate the presence of the skin with a rubber membrane in contact with the tactor, with varying pre-stretch, mimicking different indentations of the tactor on the skin. The MFC-based tactor can always generate vibration amplitudes higher than skin discrimination thresholds, over the range of frequencies of interest for haptics, with a latency much smaller than traditional actuators. We theoretically investigate the effect of the skin on tactor vibrations, highlighting the individual roles of skin stiffness and damping and their combined effect across a series of pre-stretches. Our tactor shows promise in haptic applications, including assistive technologies and real-time feedback systems for training, safety, and monitoring.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.