T Kevin Best, Kyle R Embry, Elliott J Rouse, Robert D Gregg
{"title":"动力膝关节-踝关节假体连续变化速度和倾斜度的相位变控制。","authors":"T Kevin Best, Kyle R Embry, Elliott J Rouse, Robert D Gregg","doi":"10.1109/iros51168.2021.9636180","DOIUrl":null,"url":null,"abstract":"<p><p>Most controllers for lower-limb robotic prostheses require individually tuned parameter sets for every combination of speed and incline that the device is designed for. Because ambulation occurs over a continuum of speeds and inclines, this design paradigm requires tuning of a potentially prohibitively large number of parameters. This limitation motivates an alternative control framework that enables walking over a range of speeds and inclines while requiring only a limited number of tunable parameters. In this work, we present the implementation of a continuously varying kinematic controller on a custom powered knee-ankle prosthesis. The controller uses a phase variable derived from the residual thigh angle, along with real-time estimates of ground inclination and walking speed, to compute the appropriate knee and ankle joint angles from a continuous model of able-bodied kinematic data. We modify an existing phase variable architecture to allow for changes in speeds and inclines, quantify the closed-loop accuracy of the speed and incline estimation algorithms for various references, and experimentally validate the controller by observing that it replicates kinematic trends seen in able-bodied gait as speed and incline vary.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2021 ","pages":"6182-6189"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890507/pdf/nihms-1726048.pdf","citationCount":"19","resultStr":"{\"title\":\"Phase-Variable Control of a Powered Knee-Ankle Prosthesis over Continuously Varying Speeds and Inclines.\",\"authors\":\"T Kevin Best, Kyle R Embry, Elliott J Rouse, Robert D Gregg\",\"doi\":\"10.1109/iros51168.2021.9636180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most controllers for lower-limb robotic prostheses require individually tuned parameter sets for every combination of speed and incline that the device is designed for. Because ambulation occurs over a continuum of speeds and inclines, this design paradigm requires tuning of a potentially prohibitively large number of parameters. This limitation motivates an alternative control framework that enables walking over a range of speeds and inclines while requiring only a limited number of tunable parameters. In this work, we present the implementation of a continuously varying kinematic controller on a custom powered knee-ankle prosthesis. The controller uses a phase variable derived from the residual thigh angle, along with real-time estimates of ground inclination and walking speed, to compute the appropriate knee and ankle joint angles from a continuous model of able-bodied kinematic data. We modify an existing phase variable architecture to allow for changes in speeds and inclines, quantify the closed-loop accuracy of the speed and incline estimation algorithms for various references, and experimentally validate the controller by observing that it replicates kinematic trends seen in able-bodied gait as speed and incline vary.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2021 \",\"pages\":\"6182-6189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890507/pdf/nihms-1726048.pdf\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iros51168.2021.9636180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iros51168.2021.9636180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phase-Variable Control of a Powered Knee-Ankle Prosthesis over Continuously Varying Speeds and Inclines.
Most controllers for lower-limb robotic prostheses require individually tuned parameter sets for every combination of speed and incline that the device is designed for. Because ambulation occurs over a continuum of speeds and inclines, this design paradigm requires tuning of a potentially prohibitively large number of parameters. This limitation motivates an alternative control framework that enables walking over a range of speeds and inclines while requiring only a limited number of tunable parameters. In this work, we present the implementation of a continuously varying kinematic controller on a custom powered knee-ankle prosthesis. The controller uses a phase variable derived from the residual thigh angle, along with real-time estimates of ground inclination and walking speed, to compute the appropriate knee and ankle joint angles from a continuous model of able-bodied kinematic data. We modify an existing phase variable architecture to allow for changes in speeds and inclines, quantify the closed-loop accuracy of the speed and incline estimation algorithms for various references, and experimentally validate the controller by observing that it replicates kinematic trends seen in able-bodied gait as speed and incline vary.