选择性注意的时空动力学和使用Stroop任务的视觉冲突监测。

IF 2 4区 医学 Q3 NEUROSCIENCES
Cognitive Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-09-14 DOI:10.1080/17588928.2023.2259554
Rawan Jarrar, Colleen Monahan, Johanna Shattuck, Peter Teale, Eugene Kronberg, Benzi M Kluger, Isabelle Buard
{"title":"选择性注意的时空动力学和使用Stroop任务的视觉冲突监测。","authors":"Rawan Jarrar, Colleen Monahan, Johanna Shattuck, Peter Teale, Eugene Kronberg, Benzi M Kluger, Isabelle Buard","doi":"10.1080/17588928.2023.2259554","DOIUrl":null,"url":null,"abstract":"<p><p>Selective attention and conflict monitoring are daily human phenomena, yet the spatial and temporal neurological underpinnings of these processes are not fully understood. Current literature suggests these executive functions occur via diverse and highly interconnected neural networks, including top-down, bottom-up, and conflict-control loops. To investigate the spatiotemporal activity of these processes, we collected neuromagnetic data using magnetoencephalography (MEG) in 28 healthy adults (age 19-36), while they performed a computerized Stroop task based on color naming. We focused on low-frequency oscillations in the context of top-down control and hypothesized that conflict monitoring-related activity would first be observed in the left anterior cingulate cortex, followed by the left dorsolateral prefrontal cortex, and subsequently in the parietal and temporal lobes. Significant activity between 600-1000 ms post-stimulus onset was found for incongruent vs. congruent/neutral contrasts. Interestingly, spatiotemporal analysis did not provide evidence for a top-down pattern of activation, instead revealing a simultaneous pattern of activation in the frontal and temporal lobes. Most notable is the involvement of the left posterior inferior temporal cortex (pITC) and the left temporoparietal junction (TPJ), which have not conventionally been considered active players in attentional control. These results may be largely driven by alpha and beta oscillations from our sample population. Our findings challenge early theoretical models of top-down processing in the context of cognitive control from an attention perspective and also suggest a need to investigate attentional centers in the temporal lobe. Furthermore, the study highlights the valuable temporal data provided by MEG, which has been missing from previous studies.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamics of selective attention and visual conflict monitoring using a Stroop task.\",\"authors\":\"Rawan Jarrar, Colleen Monahan, Johanna Shattuck, Peter Teale, Eugene Kronberg, Benzi M Kluger, Isabelle Buard\",\"doi\":\"10.1080/17588928.2023.2259554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selective attention and conflict monitoring are daily human phenomena, yet the spatial and temporal neurological underpinnings of these processes are not fully understood. Current literature suggests these executive functions occur via diverse and highly interconnected neural networks, including top-down, bottom-up, and conflict-control loops. To investigate the spatiotemporal activity of these processes, we collected neuromagnetic data using magnetoencephalography (MEG) in 28 healthy adults (age 19-36), while they performed a computerized Stroop task based on color naming. We focused on low-frequency oscillations in the context of top-down control and hypothesized that conflict monitoring-related activity would first be observed in the left anterior cingulate cortex, followed by the left dorsolateral prefrontal cortex, and subsequently in the parietal and temporal lobes. Significant activity between 600-1000 ms post-stimulus onset was found for incongruent vs. congruent/neutral contrasts. Interestingly, spatiotemporal analysis did not provide evidence for a top-down pattern of activation, instead revealing a simultaneous pattern of activation in the frontal and temporal lobes. Most notable is the involvement of the left posterior inferior temporal cortex (pITC) and the left temporoparietal junction (TPJ), which have not conventionally been considered active players in attentional control. These results may be largely driven by alpha and beta oscillations from our sample population. Our findings challenge early theoretical models of top-down processing in the context of cognitive control from an attention perspective and also suggest a need to investigate attentional centers in the temporal lobe. Furthermore, the study highlights the valuable temporal data provided by MEG, which has been missing from previous studies.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2023.2259554\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2023.2259554","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

选择性注意和冲突监测是人类日常现象,但这些过程的空间和时间神经基础尚未完全理解。目前的文献表明,这些执行功能是通过各种高度互联的神经网络实现的,包括自上而下、自下而上和冲突控制回路。为了研究这些过程的时空活动,我们使用脑磁图(MEG)收集了28名健康成年人(19-36岁)的神经磁数据,同时他们执行了基于颜色命名的计算机化Stroop任务。我们专注于自上而下控制背景下的低频振荡,并假设冲突监测相关活动将首先在左前扣带皮层中观察到,然后在左背外侧前额叶皮层,然后在顶叶和颞叶中观察到。600-1000之间的显著活动 刺激开始后ms发现不一致对比与一致/中性对比。有趣的是,时空分析并没有为自上而下的激活模式提供证据,而是揭示了额叶和颞叶同时激活的模式。最值得注意的是左后颞下皮质(pITC)和左颞顶叶交界处(TPJ)的参与,它们通常不被认为是注意力控制的积极参与者。这些结果可能在很大程度上是由我们样本群体的α和β振荡驱动的。我们的发现从注意力的角度挑战了认知控制背景下自上而下处理的早期理论模型,也表明有必要研究颞叶的注意力中心。此外,该研究强调了MEG提供的有价值的时间数据,而这些数据在以前的研究中是缺失的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal dynamics of selective attention and visual conflict monitoring using a Stroop task.

Selective attention and conflict monitoring are daily human phenomena, yet the spatial and temporal neurological underpinnings of these processes are not fully understood. Current literature suggests these executive functions occur via diverse and highly interconnected neural networks, including top-down, bottom-up, and conflict-control loops. To investigate the spatiotemporal activity of these processes, we collected neuromagnetic data using magnetoencephalography (MEG) in 28 healthy adults (age 19-36), while they performed a computerized Stroop task based on color naming. We focused on low-frequency oscillations in the context of top-down control and hypothesized that conflict monitoring-related activity would first be observed in the left anterior cingulate cortex, followed by the left dorsolateral prefrontal cortex, and subsequently in the parietal and temporal lobes. Significant activity between 600-1000 ms post-stimulus onset was found for incongruent vs. congruent/neutral contrasts. Interestingly, spatiotemporal analysis did not provide evidence for a top-down pattern of activation, instead revealing a simultaneous pattern of activation in the frontal and temporal lobes. Most notable is the involvement of the left posterior inferior temporal cortex (pITC) and the left temporoparietal junction (TPJ), which have not conventionally been considered active players in attentional control. These results may be largely driven by alpha and beta oscillations from our sample population. Our findings challenge early theoretical models of top-down processing in the context of cognitive control from an attention perspective and also suggest a need to investigate attentional centers in the temporal lobe. Furthermore, the study highlights the valuable temporal data provided by MEG, which has been missing from previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neuroscience
Cognitive Neuroscience NEUROSCIENCES-
CiteScore
3.60
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信