H Nakibapher Jones Shangpliang, Jyoti Prakash Tamang
{"title":"从印度自制发酵乳制品(Chhurpi)中分离出的潜在益生菌 Levilactobacillus brevis AcCh91 的基因组分析。","authors":"H Nakibapher Jones Shangpliang, Jyoti Prakash Tamang","doi":"10.1007/s12602-023-10125-y","DOIUrl":null,"url":null,"abstract":"<p><p>Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1583-1607"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome Analysis of Potential Probiotic Levilactobacillus brevis AcCh91 Isolated from Indian Home-Made Fermented Milk Product (Chhurpi).\",\"authors\":\"H Nakibapher Jones Shangpliang, Jyoti Prakash Tamang\",\"doi\":\"10.1007/s12602-023-10125-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"1583-1607\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-023-10125-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-023-10125-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genome Analysis of Potential Probiotic Levilactobacillus brevis AcCh91 Isolated from Indian Home-Made Fermented Milk Product (Chhurpi).
Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.