Roxann S C Rikkers, Bart J Ducro, Rianne van Binsbergen, Claudia Kamphuis
{"title":"预测采用传统挤奶系统的农场奶牛群的恢复力。","authors":"Roxann S C Rikkers, Bart J Ducro, Rianne van Binsbergen, Claudia Kamphuis","doi":"10.1017/S0022029923000432","DOIUrl":null,"url":null,"abstract":"<p><p>This research paper addresses the problem that, thus far, there is no method available to predict herd resilience for farms that do not use automated milking systems (AMS). Recently, a methodology was developed to estimate both individual cow as well as herd resilience using daily milk yield observations at individual cow level from farms with AMS. This AMS-based method, however, is not suitable on farms that use conventional milking systems (CMS) where such individual cow milk yield observations are lacking. Therefore, this research aimed at predicting herd resilience using herd performance data that is commonly available on CMS farms. To do so, data consisting of 585 Dutch AMS farms where herd resilience estimates using the AMS-based method were available was examined. To predict herd resilience with herd performance data, only those data that are also commonly available on CMS farms were used in a 5-fold cross validation Random Forest model. These herd resilience estimates were subsequently compared with the AMS-based herd resilience estimates. Results showed that it is possible to predict with a 69.9% probability whether a herd performs with above or below average herd resilience using only variables available on CMS farms. Especially, the proportion of cows with an indication of rumen acidosis, proportion of cows with an elevated somatic cell count and the fluctuation in herd size over the years are good predictors of herd resilience. Since herd management decisions appear to affect herd resilience, a lower predicted herd resilience could be taken as a general indication that tactical or strategic management changes could be taken to improve the herd resilience.</p>","PeriodicalId":15615,"journal":{"name":"Journal of Dairy Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting dairy herd resilience on farms with conventional milking systems.\",\"authors\":\"Roxann S C Rikkers, Bart J Ducro, Rianne van Binsbergen, Claudia Kamphuis\",\"doi\":\"10.1017/S0022029923000432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research paper addresses the problem that, thus far, there is no method available to predict herd resilience for farms that do not use automated milking systems (AMS). Recently, a methodology was developed to estimate both individual cow as well as herd resilience using daily milk yield observations at individual cow level from farms with AMS. This AMS-based method, however, is not suitable on farms that use conventional milking systems (CMS) where such individual cow milk yield observations are lacking. Therefore, this research aimed at predicting herd resilience using herd performance data that is commonly available on CMS farms. To do so, data consisting of 585 Dutch AMS farms where herd resilience estimates using the AMS-based method were available was examined. To predict herd resilience with herd performance data, only those data that are also commonly available on CMS farms were used in a 5-fold cross validation Random Forest model. These herd resilience estimates were subsequently compared with the AMS-based herd resilience estimates. Results showed that it is possible to predict with a 69.9% probability whether a herd performs with above or below average herd resilience using only variables available on CMS farms. Especially, the proportion of cows with an indication of rumen acidosis, proportion of cows with an elevated somatic cell count and the fluctuation in herd size over the years are good predictors of herd resilience. Since herd management decisions appear to affect herd resilience, a lower predicted herd resilience could be taken as a general indication that tactical or strategic management changes could be taken to improve the herd resilience.</p>\",\"PeriodicalId\":15615,\"journal\":{\"name\":\"Journal of Dairy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dairy Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/S0022029923000432\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0022029923000432","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Predicting dairy herd resilience on farms with conventional milking systems.
This research paper addresses the problem that, thus far, there is no method available to predict herd resilience for farms that do not use automated milking systems (AMS). Recently, a methodology was developed to estimate both individual cow as well as herd resilience using daily milk yield observations at individual cow level from farms with AMS. This AMS-based method, however, is not suitable on farms that use conventional milking systems (CMS) where such individual cow milk yield observations are lacking. Therefore, this research aimed at predicting herd resilience using herd performance data that is commonly available on CMS farms. To do so, data consisting of 585 Dutch AMS farms where herd resilience estimates using the AMS-based method were available was examined. To predict herd resilience with herd performance data, only those data that are also commonly available on CMS farms were used in a 5-fold cross validation Random Forest model. These herd resilience estimates were subsequently compared with the AMS-based herd resilience estimates. Results showed that it is possible to predict with a 69.9% probability whether a herd performs with above or below average herd resilience using only variables available on CMS farms. Especially, the proportion of cows with an indication of rumen acidosis, proportion of cows with an elevated somatic cell count and the fluctuation in herd size over the years are good predictors of herd resilience. Since herd management decisions appear to affect herd resilience, a lower predicted herd resilience could be taken as a general indication that tactical or strategic management changes could be taken to improve the herd resilience.
期刊介绍:
The Journal of Dairy Research is an international Journal of high-standing that publishes original scientific research on all aspects of the biology, wellbeing and technology of lactating animals and the foods they produce. The Journal’s ability to cover the entire dairy foods chain is a major strength. Cross-disciplinary research is particularly welcomed, as is comparative lactation research in different dairy and non-dairy species and research dealing with consumer health aspects of dairy products. Journal of Dairy Research: an international Journal of the lactation sciences.