开发一个计算实验框架,用于增强关节软骨浅区的力学特性和跨物种比较。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Steven P Mell, Catherine Yuh, Thomas Nagel, Susan Chubinskaya, Hannah J Lundberg, Markus A Wimmer
{"title":"开发一个计算实验框架,用于增强关节软骨浅区的力学特性和跨物种比较。","authors":"Steven P Mell, Catherine Yuh, Thomas Nagel, Susan Chubinskaya, Hannah J Lundberg, Markus A Wimmer","doi":"10.1080/10255842.2023.2255712","DOIUrl":null,"url":null,"abstract":"<p><p>To provide a better understanding of the contribution of specific constituents (i.e. proteoglycan, collagen, fluid) to the mechanical behavior of the superficial zone of articular cartilage, a complex biological tissue with several time-dependent properties, a finite element model was developed. Optimization was then used to fit the model to microindentation experiments. We used this model to compare superficial zone material properties of mature human vs. immature bovine articular cartilage. Non-linearity and stiffness of the fiber-reinforced component of the model differed between human and bovine tissue. This may be due to the more complex collagen architecture in mature tissue and is of interest to investigate in future work.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a computational-experimental framework for enhanced mechanical characterization and cross-species comparison of the articular cartilage superficial zone.\",\"authors\":\"Steven P Mell, Catherine Yuh, Thomas Nagel, Susan Chubinskaya, Hannah J Lundberg, Markus A Wimmer\",\"doi\":\"10.1080/10255842.2023.2255712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To provide a better understanding of the contribution of specific constituents (i.e. proteoglycan, collagen, fluid) to the mechanical behavior of the superficial zone of articular cartilage, a complex biological tissue with several time-dependent properties, a finite element model was developed. Optimization was then used to fit the model to microindentation experiments. We used this model to compare superficial zone material properties of mature human vs. immature bovine articular cartilage. Non-linearity and stiffness of the fiber-reinforced component of the model differed between human and bovine tissue. This may be due to the more complex collagen architecture in mature tissue and is of interest to investigate in future work.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2255712\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2255712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地了解特定成分(即蛋白多糖、胶原蛋白、流体)对关节软骨浅表区力学行为的贡献,开发了一个有限元模型。关节软骨是一种具有多种时间依赖特性的复杂生物组织。然后使用优化来将模型与显微压痕实验相匹配。我们使用这个模型来比较成熟的人和未成熟的牛关节软骨的浅表区材料特性。该模型的纤维增强部件的非线性和刚度在人和牛组织之间存在差异。这可能是由于成熟组织中更复杂的胶原结构,有兴趣在未来的工作中进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a computational-experimental framework for enhanced mechanical characterization and cross-species comparison of the articular cartilage superficial zone.

To provide a better understanding of the contribution of specific constituents (i.e. proteoglycan, collagen, fluid) to the mechanical behavior of the superficial zone of articular cartilage, a complex biological tissue with several time-dependent properties, a finite element model was developed. Optimization was then used to fit the model to microindentation experiments. We used this model to compare superficial zone material properties of mature human vs. immature bovine articular cartilage. Non-linearity and stiffness of the fiber-reinforced component of the model differed between human and bovine tissue. This may be due to the more complex collagen architecture in mature tissue and is of interest to investigate in future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信