{"title":"双臂触觉硬膜外插针模拟器的设计与评估","authors":"Nitsan Davidor;Yair Binyamin;Tamar Hayuni Kosovsky;Ilana Nisky","doi":"10.1109/TOH.2023.3312666","DOIUrl":null,"url":null,"abstract":"The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals-the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"16 4","pages":"736-747"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Assessment of a Bimanual Haptic Epidural Needle Insertion Simulator\",\"authors\":\"Nitsan Davidor;Yair Binyamin;Tamar Hayuni Kosovsky;Ilana Nisky\",\"doi\":\"10.1109/TOH.2023.3312666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals-the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"16 4\",\"pages\":\"736-747\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10243089/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10243089/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Design and Assessment of a Bimanual Haptic Epidural Needle Insertion Simulator
The case experience of anesthesiologists is one of the leading causes of accidental dural punctures and failed epidurals-the most common complications of epidural analgesia used for pain relief during delivery. We designed a bimanual haptic simulator to train anesthesiologists and optimize epidural analgesia skill acquisition. We present an assessment study conducted with 22 anesthesiologists of different competency levels from several Israeli hospitals. Our simulator emulates the forces applied to the epidural (Touhy) needle, held by one hand, and those applied to the Loss of Resistance (LOR) syringe, held by the other one. The resistance is calculated based on a model of the epidural region layers parameterized by the weight of the patient. We measured the movements of both haptic devices and quantified the results' rate (success, failed epidurals, and dural punctures), insertion strategies, and the participants' answers to questionnaires about their perception of the simulation realism. We demonstrated good construct validity by showing that the simulator can distinguish between real-life novices and experts. Face and content validity were examined by studying users' impressions regarding the simulator's realism and fulfillment of purpose. We found differences in strategies between different level anesthesiologists, and suggest trainee-based instruction in advanced training stages.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.