Wan Zhang, Dechong Zhu, Yanfeng Sui, Junhui Yue, Jianshe Cao, Jun He
{"title":"探索基于塔尔博特效应的BEPCII束流尺寸测量。","authors":"Wan Zhang, Dechong Zhu, Yanfeng Sui, Junhui Yue, Jianshe Cao, Jun He","doi":"10.1107/S1600577523006355","DOIUrl":null,"url":null,"abstract":"<p><p>Vertical beam size measurements were carried out at Beijing Electron-Positron Collider II (BEPCII) using a phase grating and an absorption grating based on the Talbot effect. The transverse coherence of synchrotron radiation is closely related to beam size. Due to the partial coherence of the synchrotron radiation source, the coherence length can be calculated by measuring the visibility decay of interferograms recorded at different distances behind the gratings. A vertical beam size of 68.19 ± 2 µm was obtained based on the relationship between the coherence length and beam size at the 3W1 beamline of BEPCII. A comparison of the vertical emittance derived from the grating Talbot method and the synchrotron radiation visible light interferometer method was presented. The vertical emittances from the two methods are 1.41 nm rad and 1.40 nm rad, respectively. The 0.1% difference indicates that the grating Talbot method for beam size measurement is reliable. This technique has great potential for small beam size measurement of fourth-generation synchrotron radiation light sources, considering its small diffraction limitation and simple experimental setups.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"30 Pt 5","pages":"910-916"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring beam size measurement based on the Talbot effect at BEPCII.\",\"authors\":\"Wan Zhang, Dechong Zhu, Yanfeng Sui, Junhui Yue, Jianshe Cao, Jun He\",\"doi\":\"10.1107/S1600577523006355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertical beam size measurements were carried out at Beijing Electron-Positron Collider II (BEPCII) using a phase grating and an absorption grating based on the Talbot effect. The transverse coherence of synchrotron radiation is closely related to beam size. Due to the partial coherence of the synchrotron radiation source, the coherence length can be calculated by measuring the visibility decay of interferograms recorded at different distances behind the gratings. A vertical beam size of 68.19 ± 2 µm was obtained based on the relationship between the coherence length and beam size at the 3W1 beamline of BEPCII. A comparison of the vertical emittance derived from the grating Talbot method and the synchrotron radiation visible light interferometer method was presented. The vertical emittances from the two methods are 1.41 nm rad and 1.40 nm rad, respectively. The 0.1% difference indicates that the grating Talbot method for beam size measurement is reliable. This technique has great potential for small beam size measurement of fourth-generation synchrotron radiation light sources, considering its small diffraction limitation and simple experimental setups.</p>\",\"PeriodicalId\":17114,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\"30 Pt 5\",\"pages\":\"910-916\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577523006355\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577523006355","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Exploring beam size measurement based on the Talbot effect at BEPCII.
Vertical beam size measurements were carried out at Beijing Electron-Positron Collider II (BEPCII) using a phase grating and an absorption grating based on the Talbot effect. The transverse coherence of synchrotron radiation is closely related to beam size. Due to the partial coherence of the synchrotron radiation source, the coherence length can be calculated by measuring the visibility decay of interferograms recorded at different distances behind the gratings. A vertical beam size of 68.19 ± 2 µm was obtained based on the relationship between the coherence length and beam size at the 3W1 beamline of BEPCII. A comparison of the vertical emittance derived from the grating Talbot method and the synchrotron radiation visible light interferometer method was presented. The vertical emittances from the two methods are 1.41 nm rad and 1.40 nm rad, respectively. The 0.1% difference indicates that the grating Talbot method for beam size measurement is reliable. This technique has great potential for small beam size measurement of fourth-generation synchrotron radiation light sources, considering its small diffraction limitation and simple experimental setups.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.