{"title":"多变量纵向和生存数据的半参数潜伏类模型。","authors":"Kin Yau Wong, Donglin Zeng, D Y Lin","doi":"10.1214/21-aos2117","DOIUrl":null,"url":null,"abstract":"<p><p>In long-term follow-up studies, data are often collected on repeated measures of multivariate response variables as well as on time to the occurrence of a certain event. To jointly analyze such longitudinal data and survival time, we propose a general class of semiparametric latent-class models that accommodates a heterogeneous study population with flexible dependence structures between the longitudinal and survival outcomes. We combine nonparametric maximum likelihood estimation with sieve estimation and devise an efficient EM algorithm to implement the proposed approach. We establish the asymptotic properties of the proposed estimators through novel use of modern empirical process theory, sieve estimation theory, and semiparametric efficiency theory. Finally, we demonstrate the advantages of the proposed methods through extensive simulation studies and provide an application to the Atherosclerosis Risk in Communities study.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269993/pdf/nihms-1764505.pdf","citationCount":"0","resultStr":"{\"title\":\"SEMIPARAMETRIC LATENT-CLASS MODELS FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.\",\"authors\":\"Kin Yau Wong, Donglin Zeng, D Y Lin\",\"doi\":\"10.1214/21-aos2117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In long-term follow-up studies, data are often collected on repeated measures of multivariate response variables as well as on time to the occurrence of a certain event. To jointly analyze such longitudinal data and survival time, we propose a general class of semiparametric latent-class models that accommodates a heterogeneous study population with flexible dependence structures between the longitudinal and survival outcomes. We combine nonparametric maximum likelihood estimation with sieve estimation and devise an efficient EM algorithm to implement the proposed approach. We establish the asymptotic properties of the proposed estimators through novel use of modern empirical process theory, sieve estimation theory, and semiparametric efficiency theory. Finally, we demonstrate the advantages of the proposed methods through extensive simulation studies and provide an application to the Atherosclerosis Risk in Communities study.</p>\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269993/pdf/nihms-1764505.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2117\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aos2117","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
SEMIPARAMETRIC LATENT-CLASS MODELS FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.
In long-term follow-up studies, data are often collected on repeated measures of multivariate response variables as well as on time to the occurrence of a certain event. To jointly analyze such longitudinal data and survival time, we propose a general class of semiparametric latent-class models that accommodates a heterogeneous study population with flexible dependence structures between the longitudinal and survival outcomes. We combine nonparametric maximum likelihood estimation with sieve estimation and devise an efficient EM algorithm to implement the proposed approach. We establish the asymptotic properties of the proposed estimators through novel use of modern empirical process theory, sieve estimation theory, and semiparametric efficiency theory. Finally, we demonstrate the advantages of the proposed methods through extensive simulation studies and provide an application to the Atherosclerosis Risk in Communities study.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.