{"title":"在 C-1 或 C-2 位置用荧光丹酰氨基标记的葡萄糖类似物的生物成像。","authors":"Mio Yanagida, Hirofumi Nakano, Hironori Ueno","doi":"10.1093/jmicro/dfad036","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose is the most important energy source in all organisms; however, our understanding of the pathways and mechanisms underlying glucose transportation and localization in living cells is incomplete. Here, we prepared two glucose analogs labeled with a dansylamino group at the C-1 (1-Dansyl) or C-2 (2-Dansyl) position; the dansyl group is a highly fluorescent moiety that is characterized by a large Stokes shift between its excitation and emission wavelengths. We then examined the cytotoxicity of the two glucose analogs in mammalian fibroblast cells and in the ciliated protozoan Tetrahymena thermophila. In both cell types, 2-Dansyl had no negative effects on cell growth. The specificity of cellular uptake of glucose analogs was confirmed using an inhibitor of glucose transporter in NIH3T3 cells. In NIH3T3 cells and T. thermophila, fluorescence microscopy revealed that the glucose analogs localized throughout the cytoplasm, but especially at the periphery of the nucleus. In T. thermophila, we also found that swimming speed was comparable in media containing non-labeled glucose or one of the glucose analogs, which provided more evidence not only that the analogs were not cytotoxic in these cells but also that the analogs had no negative effect on the ciliary motion. Together, the present results suggest that the glucose analogs have low toxicity and will be useful for bioimaging of glucose-related systems.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"47-54"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioimaging of glucose analogs labeled at the C-1 or C-2 position with a fluorescent dansylamino group.\",\"authors\":\"Mio Yanagida, Hirofumi Nakano, Hironori Ueno\",\"doi\":\"10.1093/jmicro/dfad036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucose is the most important energy source in all organisms; however, our understanding of the pathways and mechanisms underlying glucose transportation and localization in living cells is incomplete. Here, we prepared two glucose analogs labeled with a dansylamino group at the C-1 (1-Dansyl) or C-2 (2-Dansyl) position; the dansyl group is a highly fluorescent moiety that is characterized by a large Stokes shift between its excitation and emission wavelengths. We then examined the cytotoxicity of the two glucose analogs in mammalian fibroblast cells and in the ciliated protozoan Tetrahymena thermophila. In both cell types, 2-Dansyl had no negative effects on cell growth. The specificity of cellular uptake of glucose analogs was confirmed using an inhibitor of glucose transporter in NIH3T3 cells. In NIH3T3 cells and T. thermophila, fluorescence microscopy revealed that the glucose analogs localized throughout the cytoplasm, but especially at the periphery of the nucleus. In T. thermophila, we also found that swimming speed was comparable in media containing non-labeled glucose or one of the glucose analogs, which provided more evidence not only that the analogs were not cytotoxic in these cells but also that the analogs had no negative effect on the ciliary motion. Together, the present results suggest that the glucose analogs have low toxicity and will be useful for bioimaging of glucose-related systems.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"47-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfad036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioimaging of glucose analogs labeled at the C-1 or C-2 position with a fluorescent dansylamino group.
Glucose is the most important energy source in all organisms; however, our understanding of the pathways and mechanisms underlying glucose transportation and localization in living cells is incomplete. Here, we prepared two glucose analogs labeled with a dansylamino group at the C-1 (1-Dansyl) or C-2 (2-Dansyl) position; the dansyl group is a highly fluorescent moiety that is characterized by a large Stokes shift between its excitation and emission wavelengths. We then examined the cytotoxicity of the two glucose analogs in mammalian fibroblast cells and in the ciliated protozoan Tetrahymena thermophila. In both cell types, 2-Dansyl had no negative effects on cell growth. The specificity of cellular uptake of glucose analogs was confirmed using an inhibitor of glucose transporter in NIH3T3 cells. In NIH3T3 cells and T. thermophila, fluorescence microscopy revealed that the glucose analogs localized throughout the cytoplasm, but especially at the periphery of the nucleus. In T. thermophila, we also found that swimming speed was comparable in media containing non-labeled glucose or one of the glucose analogs, which provided more evidence not only that the analogs were not cytotoxic in these cells but also that the analogs had no negative effect on the ciliary motion. Together, the present results suggest that the glucose analogs have low toxicity and will be useful for bioimaging of glucose-related systems.