Ahsan Waqar, Idris Othman, Nasir Shafiq, Muhammad Shoaib Mansoor
{"title":"人工智能在实现可持续发展的石油和天然气项目中的应用:系统文献综述。","authors":"Ahsan Waqar, Idris Othman, Nasir Shafiq, Muhammad Shoaib Mansoor","doi":"10.1007/s10462-023-10467-7","DOIUrl":null,"url":null,"abstract":"<div><p>Oil and gas construction projects are critical for meeting global demand for fossil fuels, but they also present unique risks and challenges that require innovative construction approaches. Artificial Intelligence (AI) has emerged as a promising technology for tackling these challenges, and this study examines its applications for sustainable development in the oil and gas industry. Using a systematic literature review (SLR), this research evaluates research trends from 2011 to 2022. It provides a detailed analysis of how AI suits oil and gas construction. A total of 115 research articles were reviewed to identify original contributions, and the findings indicate a positive trend in AI research related to oil and gas construction projects, especially after 2016. The originality of this study lies in its comprehensive analysis of the latest research on AI applications in the oil and gas industry and its contribution to developing recommendations for improving the sustainability of oil and gas projects. This research’s originality is in providing insight into the most promising AI applications and methodologies that can help drive sustainable development in the oil and gas industry.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"56 11","pages":"12771 - 12798"},"PeriodicalIF":10.7000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-023-10467-7.pdf","citationCount":"24","resultStr":"{\"title\":\"Applications of AI in oil and gas projects towards sustainable development: a systematic literature review\",\"authors\":\"Ahsan Waqar, Idris Othman, Nasir Shafiq, Muhammad Shoaib Mansoor\",\"doi\":\"10.1007/s10462-023-10467-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oil and gas construction projects are critical for meeting global demand for fossil fuels, but they also present unique risks and challenges that require innovative construction approaches. Artificial Intelligence (AI) has emerged as a promising technology for tackling these challenges, and this study examines its applications for sustainable development in the oil and gas industry. Using a systematic literature review (SLR), this research evaluates research trends from 2011 to 2022. It provides a detailed analysis of how AI suits oil and gas construction. A total of 115 research articles were reviewed to identify original contributions, and the findings indicate a positive trend in AI research related to oil and gas construction projects, especially after 2016. The originality of this study lies in its comprehensive analysis of the latest research on AI applications in the oil and gas industry and its contribution to developing recommendations for improving the sustainability of oil and gas projects. This research’s originality is in providing insight into the most promising AI applications and methodologies that can help drive sustainable development in the oil and gas industry.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"56 11\",\"pages\":\"12771 - 12798\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-023-10467-7.pdf\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-023-10467-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-023-10467-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Applications of AI in oil and gas projects towards sustainable development: a systematic literature review
Oil and gas construction projects are critical for meeting global demand for fossil fuels, but they also present unique risks and challenges that require innovative construction approaches. Artificial Intelligence (AI) has emerged as a promising technology for tackling these challenges, and this study examines its applications for sustainable development in the oil and gas industry. Using a systematic literature review (SLR), this research evaluates research trends from 2011 to 2022. It provides a detailed analysis of how AI suits oil and gas construction. A total of 115 research articles were reviewed to identify original contributions, and the findings indicate a positive trend in AI research related to oil and gas construction projects, especially after 2016. The originality of this study lies in its comprehensive analysis of the latest research on AI applications in the oil and gas industry and its contribution to developing recommendations for improving the sustainability of oil and gas projects. This research’s originality is in providing insight into the most promising AI applications and methodologies that can help drive sustainable development in the oil and gas industry.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.