{"title":"超低能量扫描电子显微镜在着陆能量接近 0 eV 时的对比机制。","authors":"Tomohiro Aoyama, Šárka Mikmeková, Kazuhiro Kumagai","doi":"10.1093/jmicro/dfad042","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the technique of scanning electron microscopy (SEM) observation with low landing energy of a few keV or less has become common. We have especially focused on the drastic contrast change at near 0 eV. Using a patterned sample consisting of Si, Ni and Pt, threshold energies where the total reflection of incident electrons occurs were investigated by SEM at near 0 eV. In both the cases of in-situ and ex-situ sample cleaning, drastic changes in the brightness of each material were observed at near 0 eV, with threshold energies in the order Si < Ni < Pt. This order agreed with the order of the literature values of the work functions and the surface potentials measured by Kelvin force probe microscopy. This result suggests that the difference of the threshold energy is caused by the difference in surface potential due to the work function difference of each material. Although the order of the threshold energies also agreed with those of work functions reported in the literature, the work functions of air-exposed surfaces should be rather considered as 'modified work functions', since they could be significantly altered by the adsorbates, etc. Nevertheless, the difference of the threshold energy for each material was observed with commercial SEM at landing energy near 0 eV, which opens a new possibility to distinguish materials, although the difference should be rather recognized as 'fingerprints', since surface potentials are sensitive to conditions of surface treatments and atmospheric exposure.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"243-250"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrast mechanism at landing energy near 0 eV in super low-energy scanning electron microscopy.\",\"authors\":\"Tomohiro Aoyama, Šárka Mikmeková, Kazuhiro Kumagai\",\"doi\":\"10.1093/jmicro/dfad042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the technique of scanning electron microscopy (SEM) observation with low landing energy of a few keV or less has become common. We have especially focused on the drastic contrast change at near 0 eV. Using a patterned sample consisting of Si, Ni and Pt, threshold energies where the total reflection of incident electrons occurs were investigated by SEM at near 0 eV. In both the cases of in-situ and ex-situ sample cleaning, drastic changes in the brightness of each material were observed at near 0 eV, with threshold energies in the order Si < Ni < Pt. This order agreed with the order of the literature values of the work functions and the surface potentials measured by Kelvin force probe microscopy. This result suggests that the difference of the threshold energy is caused by the difference in surface potential due to the work function difference of each material. Although the order of the threshold energies also agreed with those of work functions reported in the literature, the work functions of air-exposed surfaces should be rather considered as 'modified work functions', since they could be significantly altered by the adsorbates, etc. Nevertheless, the difference of the threshold energy for each material was observed with commercial SEM at landing energy near 0 eV, which opens a new possibility to distinguish materials, although the difference should be rather recognized as 'fingerprints', since surface potentials are sensitive to conditions of surface treatments and atmospheric exposure.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"243-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfad042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
近年来,以几千电子伏特或更低的低着陆能量进行扫描电子显微镜(SEM)观测的技术已变得十分普遍。我们尤其关注 0 eV 附近对比度的急剧变化。我们使用由硅、镍和铂组成的图案化样品,通过扫描电子显微镜研究了入射电子在 0 eV 附近发生全反射的阈值能量。在原位和非原位样品清洁两种情况下,都观察到每种材料在 0 eV 附近的亮度发生了急剧变化,阈值能量依次为 Si
Contrast mechanism at landing energy near 0 eV in super low-energy scanning electron microscopy.
In recent years, the technique of scanning electron microscopy (SEM) observation with low landing energy of a few keV or less has become common. We have especially focused on the drastic contrast change at near 0 eV. Using a patterned sample consisting of Si, Ni and Pt, threshold energies where the total reflection of incident electrons occurs were investigated by SEM at near 0 eV. In both the cases of in-situ and ex-situ sample cleaning, drastic changes in the brightness of each material were observed at near 0 eV, with threshold energies in the order Si < Ni < Pt. This order agreed with the order of the literature values of the work functions and the surface potentials measured by Kelvin force probe microscopy. This result suggests that the difference of the threshold energy is caused by the difference in surface potential due to the work function difference of each material. Although the order of the threshold energies also agreed with those of work functions reported in the literature, the work functions of air-exposed surfaces should be rather considered as 'modified work functions', since they could be significantly altered by the adsorbates, etc. Nevertheless, the difference of the threshold energy for each material was observed with commercial SEM at landing energy near 0 eV, which opens a new possibility to distinguish materials, although the difference should be rather recognized as 'fingerprints', since surface potentials are sensitive to conditions of surface treatments and atmospheric exposure.