A Tchorbadjieff, L P Tomov, V Velev, G Dezhov, V Manev, P Mayster
{"title":"On regime changes of COVID-19 outbreak.","authors":"A Tchorbadjieff, L P Tomov, V Velev, G Dezhov, V Manev, P Mayster","doi":"10.1080/02664763.2023.2177625","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has had a very serious impact on societies and caused large-scale economic changes and death toll worldwide. The first cases were detected in China, but soon the virus spread quickly worldwide and the intensity of newly reported infections grew high during this initial period almost everywhere. Later, despite all imposed measures, the intensity shifted abruptly multiple times during the two-year period between 2020 and 2022 causing waves of too high infection rates in almost every part of the world. To target this problem, we assume the data heterogeneity as multiple consecutive regime changes. The research study includes the development of a model based on automatic regime change detection and their combination with the linear birth-death process for long-run data fits. The results are empirically verified on data for 38 countries and US states for the period from February 2020 to April 2022. Finally, the initial phase (conditions) properties of infection development are studied.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"50 11-12","pages":"2343-2359"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2177625","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has had a very serious impact on societies and caused large-scale economic changes and death toll worldwide. The first cases were detected in China, but soon the virus spread quickly worldwide and the intensity of newly reported infections grew high during this initial period almost everywhere. Later, despite all imposed measures, the intensity shifted abruptly multiple times during the two-year period between 2020 and 2022 causing waves of too high infection rates in almost every part of the world. To target this problem, we assume the data heterogeneity as multiple consecutive regime changes. The research study includes the development of a model based on automatic regime change detection and their combination with the linear birth-death process for long-run data fits. The results are empirically verified on data for 38 countries and US states for the period from February 2020 to April 2022. Finally, the initial phase (conditions) properties of infection development are studied.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.