Luke Duttweiler, Sally W. Thurston, Anthony Almudevar
{"title":"Spectral Bayesian network theory","authors":"Luke Duttweiler, Sally W. Thurston, Anthony Almudevar","doi":"10.1016/j.laa.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>A Bayesian Network (BN) is a probabilistic model that represents a set of variables using a directed acyclic graph (DAG). Current algorithms for learning BN structures from data focus on estimating the edges of a specific DAG, and often lead to many ‘likely’ network structures. In this paper, we lay the groundwork for an approach that focuses on learning global properties of the DAG rather than exact edges. This is done by defining the </span><span><em>structural </em><em>hypergraph</em></span> of a BN, which is shown to be related to the inverse-covariance matrix of the network. Spectral bounds are derived for the normalized inverse-covariance matrix, which are shown to be closely related to the maximum indegree of the associated BN.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"674 ","pages":"Pages 282-303"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373448/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952300215X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
A Bayesian Network (BN) is a probabilistic model that represents a set of variables using a directed acyclic graph (DAG). Current algorithms for learning BN structures from data focus on estimating the edges of a specific DAG, and often lead to many ‘likely’ network structures. In this paper, we lay the groundwork for an approach that focuses on learning global properties of the DAG rather than exact edges. This is done by defining the structural hypergraph of a BN, which is shown to be related to the inverse-covariance matrix of the network. Spectral bounds are derived for the normalized inverse-covariance matrix, which are shown to be closely related to the maximum indegree of the associated BN.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.