Mirella Telles Salgueiro Barboni , Anneka Joachimsthaler , Michel J. Roux , Zoltán Zsolt Nagy , Dora Fix Ventura , Alvaro Rendon , Jan Kremers , Cyrille Vaillend
{"title":"Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy","authors":"Mirella Telles Salgueiro Barboni , Anneka Joachimsthaler , Michel J. Roux , Zoltán Zsolt Nagy , Dora Fix Ventura , Alvaro Rendon , Jan Kremers , Cyrille Vaillend","doi":"10.1016/j.preteyeres.2022.101137","DOIUrl":null,"url":null,"abstract":"<div><p>Duchenne muscular dystrophy (DMD) is caused by X-linked inherited or <em>de novo DMD</em> gene mutations predominantly affecting males who develop early-onset muscle degeneration, severely affecting their quality of life and leading to reduced life expectancy. DMD patients may also develop proliferative retinopathy, cataract, ERG abnormalities, altered contrast sensitivity, color vision losses, and elevated flash detection thresholds during dark adaptation. Depending on the position of the genetic alteration in the large <em>DMD</em> gene, it is associated with a lack of the full-length dystrophin protein possibly with an additional loss of one or several other dystrophins, which are normally transcribed from internal promoters in retina and crystalline lens. During the last decades, the properties of the dystrophins have been characterized in patients with different genetic alterations and in genetic mouse models of DMD. The complex expression pattern of the dystrophins in photoreceptors, Müller glial cells and astrocytes, likely influences synaptic transmission, ionic balance and vascular integrity of the retina. However, the specific function of each retinal dystrophin remains largely unknown. This review describes the current knowledge on dystrophin expression, the putative molecular, structural, and physiological properties of retinal dystrophins, and the main clinical implications associated with the loss of dystrophins in DMD patients and mouse models. Current data and working hypotheses warrant future research on retinal dystrophins to increase our understanding of dystrophin function in the central nervous system in general and to unveil new retinal mechanisms and therapeutic avenues for retinal diseases.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"95 ","pages":"Article 101137"},"PeriodicalIF":18.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946222000970","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Duchenne muscular dystrophy (DMD) is caused by X-linked inherited or de novo DMD gene mutations predominantly affecting males who develop early-onset muscle degeneration, severely affecting their quality of life and leading to reduced life expectancy. DMD patients may also develop proliferative retinopathy, cataract, ERG abnormalities, altered contrast sensitivity, color vision losses, and elevated flash detection thresholds during dark adaptation. Depending on the position of the genetic alteration in the large DMD gene, it is associated with a lack of the full-length dystrophin protein possibly with an additional loss of one or several other dystrophins, which are normally transcribed from internal promoters in retina and crystalline lens. During the last decades, the properties of the dystrophins have been characterized in patients with different genetic alterations and in genetic mouse models of DMD. The complex expression pattern of the dystrophins in photoreceptors, Müller glial cells and astrocytes, likely influences synaptic transmission, ionic balance and vascular integrity of the retina. However, the specific function of each retinal dystrophin remains largely unknown. This review describes the current knowledge on dystrophin expression, the putative molecular, structural, and physiological properties of retinal dystrophins, and the main clinical implications associated with the loss of dystrophins in DMD patients and mouse models. Current data and working hypotheses warrant future research on retinal dystrophins to increase our understanding of dystrophin function in the central nervous system in general and to unveil new retinal mechanisms and therapeutic avenues for retinal diseases.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.