OPTIMAL FALSE DISCOVERY RATE CONTROL FOR LARGE SCALE MULTIPLE TESTING WITH AUXILIARY INFORMATION.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongyuan Cao, Jun Chen, Xianyang Zhang
{"title":"OPTIMAL FALSE DISCOVERY RATE CONTROL FOR LARGE SCALE MULTIPLE TESTING WITH AUXILIARY INFORMATION.","authors":"Hongyuan Cao,&nbsp;Jun Chen,&nbsp;Xianyang Zhang","doi":"10.1214/21-aos2128","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale multiple testing is a fundamental problem in high dimensional statistical inference. It is increasingly common that various types of auxiliary information, reflecting the structural relationship among the hypotheses, are available. Exploiting such auxiliary information can boost statistical power. To this end, we propose a framework based on a two-group mixture model with varying probabilities of being null for different hypotheses <i>a priori</i>, where a shape-constrained relationship is imposed between the auxiliary information and the prior probabilities of being null. An optimal rejection rule is designed to maximize the expected number of true positives when average false discovery rate is controlled. Focusing on the ordered structure, we develop a robust EM algorithm to estimate the prior probabilities of being null and the distribution of <i>p</i>-values under the alternative hypothesis simultaneously. We show that the proposed method has better power than state-of-the-art competitors while controlling the false discovery rate, both empirically and theoretically. Extensive simulations demonstrate the advantage of the proposed method. Datasets from genome-wide association studies are used to illustrate the new methodology.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153594/pdf/nihms-1840915.pdf","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aos2128","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 15

Abstract

Large-scale multiple testing is a fundamental problem in high dimensional statistical inference. It is increasingly common that various types of auxiliary information, reflecting the structural relationship among the hypotheses, are available. Exploiting such auxiliary information can boost statistical power. To this end, we propose a framework based on a two-group mixture model with varying probabilities of being null for different hypotheses a priori, where a shape-constrained relationship is imposed between the auxiliary information and the prior probabilities of being null. An optimal rejection rule is designed to maximize the expected number of true positives when average false discovery rate is controlled. Focusing on the ordered structure, we develop a robust EM algorithm to estimate the prior probabilities of being null and the distribution of p-values under the alternative hypothesis simultaneously. We show that the proposed method has better power than state-of-the-art competitors while controlling the false discovery rate, both empirically and theoretically. Extensive simulations demonstrate the advantage of the proposed method. Datasets from genome-wide association studies are used to illustrate the new methodology.

Abstract Image

Abstract Image

基于辅助信息的大规模多重测试的最优错误发现率控制。
大规模多重检验是高维统计推理中的一个基本问题。反映假设之间结构关系的各种类型的辅助信息越来越普遍。利用这些辅助信息可以提高统计能力。为此,我们提出了一个基于两组混合模型的框架,该模型对不同的先验假设具有不同的为零概率,其中辅助信息与为零的先验概率之间施加了形状约束关系。在控制平均错误发现率的情况下,设计了一个最优拒绝规则,使真阳性的期望数量最大化。针对有序结构,我们开发了一种鲁棒的EM算法来同时估计备择假设下为零的先验概率和p值的分布。我们从经验和理论两方面证明了所提出的方法在控制错误发现率的同时具有比最先进的竞争对手更好的能力。大量的仿真实验证明了该方法的优越性。来自全基因组关联研究的数据集被用来说明新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信