{"title":"Temporal and quantitative analysis of the functional expression of Ca2+-permeable AMPA receptors during LTP","authors":"Yoshihiko Wakazono , Ryosuke Midorikawa , Kogo Takamiya","doi":"10.1016/j.neures.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we attempted to temporally and quantitatively analyze the functional contributions of Ca<sup>2+</sup>-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) during long-term potentiation (LTP) expression using electrophysiological and pharmacological approaches. In hippocampal CA1 neurons, using 1-naphthyl acetyl spermine (NASPM), a CP-AMPAR antagonist, we began by demonstrating that NASPM-sensitive components, probably including the GluA1 homomer, functionally contributed to about 15% of AMPAR-mediated EPSC amplitude in basal conditions. Then, when NASPM was treated at different time points (3–30 min) after LTP induction, it was found that LTP was almost completely impaired at 3 or 10 min but maintained at 20 or 30 min, although its potentiation was reduced. Further temporal and quantitative analysis revealed that the functional expression of CP-AMPARs began increasing approximately 20 min after LTP induction and reached more than twice the basal level at 30 min. These results suggest that CP-AMPARs in the first 3–10 min of LTP might play an important role in LTP maintenance. Moreover, their decay time was also significantly increased at 30 min, suggesting that CP-AMPARs changed not only quantitatively in LTP but also qualitatively.</p></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"198 ","pages":"Pages 21-29"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168010223001372/pdfft?md5=d9e9ab9e97e810eab330371d04c4a8fc&pid=1-s2.0-S0168010223001372-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010223001372","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we attempted to temporally and quantitatively analyze the functional contributions of Ca2+-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) during long-term potentiation (LTP) expression using electrophysiological and pharmacological approaches. In hippocampal CA1 neurons, using 1-naphthyl acetyl spermine (NASPM), a CP-AMPAR antagonist, we began by demonstrating that NASPM-sensitive components, probably including the GluA1 homomer, functionally contributed to about 15% of AMPAR-mediated EPSC amplitude in basal conditions. Then, when NASPM was treated at different time points (3–30 min) after LTP induction, it was found that LTP was almost completely impaired at 3 or 10 min but maintained at 20 or 30 min, although its potentiation was reduced. Further temporal and quantitative analysis revealed that the functional expression of CP-AMPARs began increasing approximately 20 min after LTP induction and reached more than twice the basal level at 30 min. These results suggest that CP-AMPARs in the first 3–10 min of LTP might play an important role in LTP maintenance. Moreover, their decay time was also significantly increased at 30 min, suggesting that CP-AMPARs changed not only quantitatively in LTP but also qualitatively.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.