Ccdc25 regulates neurogenesis during the brain development

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Chong Wang, Jie Qin, Jianwei Jiao, Fen Ji
{"title":"Ccdc25 regulates neurogenesis during the brain development","authors":"Chong Wang,&nbsp;Jie Qin,&nbsp;Jianwei Jiao,&nbsp;Fen Ji","doi":"10.1002/dneu.22911","DOIUrl":null,"url":null,"abstract":"<p>During brain development, the proliferation and differentiation of neural stem cells (NSCs) are precisely regulated. Defects in embryonic brain development can lead to serious developmental disorders. The cerebral cortex is the most evolved and complicated structure in the mammalian brain. The process of neuronal production, also known as neurogenesis, plays crucial roles in cerebral development and can affect the function of the neocortex. Ccdc25 is a newly discovered molecule. It has been proved that it can play an important role in tumor. However, its function in neural systems is unclear. In this study, we find that in early embryonic development, Ccdc25 can express in the brain. Suppression of the Ccdc25 mediated by shRNAs causes the increase of the Ki67- or BrdU-positive NSCs proliferation and inhibits the premature terminal mitosis and neuronal differentiation. Simultaneously, overexpression of Ccdc2525 inhibits the proliferation and promotes the differentiation of NSCs. Knockdown of Ccdc25 also affects neuronal maturation, the number of branches of neurons cultured in vitro decreased, and the number of axons became shorter. We also examined the expression profile of NSCs when Ccdc25 was knocked down by RNA sequencing technique. We found that Ccdc25 regulates the development of NSCs through Egr1. Egr1 knockdown can result in a phenotype similar to Ccdc25, while the overexpression of Egr1 can also rescue the phenotype of Ccdc25 knockdown. In conclusion, Ccdc25 can affect the proliferation and differentiation of NSCs and the maturation of neuron.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"83 3-4","pages":"91-103"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22911","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During brain development, the proliferation and differentiation of neural stem cells (NSCs) are precisely regulated. Defects in embryonic brain development can lead to serious developmental disorders. The cerebral cortex is the most evolved and complicated structure in the mammalian brain. The process of neuronal production, also known as neurogenesis, plays crucial roles in cerebral development and can affect the function of the neocortex. Ccdc25 is a newly discovered molecule. It has been proved that it can play an important role in tumor. However, its function in neural systems is unclear. In this study, we find that in early embryonic development, Ccdc25 can express in the brain. Suppression of the Ccdc25 mediated by shRNAs causes the increase of the Ki67- or BrdU-positive NSCs proliferation and inhibits the premature terminal mitosis and neuronal differentiation. Simultaneously, overexpression of Ccdc2525 inhibits the proliferation and promotes the differentiation of NSCs. Knockdown of Ccdc25 also affects neuronal maturation, the number of branches of neurons cultured in vitro decreased, and the number of axons became shorter. We also examined the expression profile of NSCs when Ccdc25 was knocked down by RNA sequencing technique. We found that Ccdc25 regulates the development of NSCs through Egr1. Egr1 knockdown can result in a phenotype similar to Ccdc25, while the overexpression of Egr1 can also rescue the phenotype of Ccdc25 knockdown. In conclusion, Ccdc25 can affect the proliferation and differentiation of NSCs and the maturation of neuron.

Ccdc25调节大脑发育过程中的神经发生
在大脑发育过程中,神经干细胞(NSCs)的增殖和分化受到精确调控。胚胎大脑发育缺陷会导致严重的发育障碍。大脑皮层是哺乳动物大脑中最进化、最复杂的结构。神经元产生的过程,也被称为神经发生,在大脑发育中起着至关重要的作用,并能影响新皮层的功能。Ccdc25是一种新发现的分子。已证实它在肿瘤中起重要作用。然而,其在神经系统中的功能尚不清楚。在本研究中,我们发现在胚胎发育早期,Ccdc25可以在大脑中表达。shRNAs介导的Ccdc25的抑制可导致Ki67或brdu阳性的NSCs增殖增加,并抑制其早终有丝分裂和神经元分化。同时,过表达Ccdc2525可抑制NSCs的增殖,促进其分化。敲低Ccdc25也会影响神经元的成熟,体外培养的神经元分支数量减少,轴突数量变短。我们还通过RNA测序技术检测了Ccdc25被敲除时NSCs的表达谱。我们发现Ccdc25通过Egr1调控NSCs的发育。Egr1敲低可导致与Ccdc25相似的表型,而过表达Egr1也可以挽救Ccdc25敲低的表型。综上所述,Ccdc25可以影响NSCs的增殖、分化和神经元的成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信