Prediction of secondary electron yield for metal materials using deep learning.

Masahiro Kusumi, Bunta Inoue, Yoshihiko Hirai, Masaaki Yasuda
{"title":"Prediction of secondary electron yield for metal materials using deep learning.","authors":"Masahiro Kusumi, Bunta Inoue, Yoshihiko Hirai, Masaaki Yasuda","doi":"10.1093/jmicro/dfad034","DOIUrl":null,"url":null,"abstract":"<p><p>This article describes a neural network system for predicting the secondary electron yield of metallic materials. For bulk metals, experimental values are used as training data. Due to the strong correlation between the secondary electron yield and the work function, deep learning predicts the secondary electron yield with relatively high accuracy even with a small amount of training data. Our approach demonstrates the importance of the work function in predicting the secondary electron yield. For the secondary electron yield of thin metal films on metal substrates, deep learning predictions are generated using training data obtained by Monte Carlo simulations. The accuracy of the secondary yield predictions of thin films on substrates could be improved by adding experimental values of bulk metals to the training data.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"31-36"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article describes a neural network system for predicting the secondary electron yield of metallic materials. For bulk metals, experimental values are used as training data. Due to the strong correlation between the secondary electron yield and the work function, deep learning predicts the secondary electron yield with relatively high accuracy even with a small amount of training data. Our approach demonstrates the importance of the work function in predicting the secondary electron yield. For the secondary electron yield of thin metal films on metal substrates, deep learning predictions are generated using training data obtained by Monte Carlo simulations. The accuracy of the secondary yield predictions of thin films on substrates could be improved by adding experimental values of bulk metals to the training data.

利用深度学习预测金属材料的二次电子产量。
本文介绍了一种预测金属材料二次电子产率的神经网络系统。对于块状金属,实验值被用作训练数据。由于二次电子产率与功函数之间存在很强的相关性,即使只有少量训练数据,深度学习也能以相对较高的精度预测二次电子产率。我们的方法证明了功函数在预测二次电子产率中的重要性。对于金属基底上金属薄膜的二次电子产率,深度学习预测是利用蒙特卡罗模拟获得的训练数据生成的。通过在训练数据中添加块状金属的实验值,可以提高基底上薄膜二次电子产率预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信