NeuroWRAP: integrating, validating, and sharing neurodata analysis workflows.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-04-25 eCollection Date: 2023-01-01 DOI:10.3389/fninf.2023.1082111
Zac Bowen, Gudjon Magnusson, Madeline Diep, Ujjwal Ayyangar, Aleksandr Smirnov, Patrick O Kanold, Wolfgang Losert
{"title":"NeuroWRAP: integrating, validating, and sharing neurodata analysis workflows.","authors":"Zac Bowen,&nbsp;Gudjon Magnusson,&nbsp;Madeline Diep,&nbsp;Ujjwal Ayyangar,&nbsp;Aleksandr Smirnov,&nbsp;Patrick O Kanold,&nbsp;Wolfgang Losert","doi":"10.3389/fninf.2023.1082111","DOIUrl":null,"url":null,"abstract":"<p><p>Multiphoton calcium imaging is one of the most powerful tools in modern neuroscience. However, multiphoton data require significant pre-processing of images and post-processing of extracted signals. As a result, many algorithms and pipelines have been developed for the analysis of multiphoton data, particularly two-photon imaging data. Most current studies use one of several algorithms and pipelines that are published and publicly available, and add customized upstream and downstream analysis elements to fit the needs of individual researchers. The vast differences in algorithm choices, parameter settings, pipeline composition, and data sources combine to make collaboration difficult, and raise questions about the reproducibility and robustness of experimental results. We present our solution, called NeuroWRAP (www.neurowrap.org), which is a tool that wraps multiple published algorithms together, and enables integration of custom algorithms. It enables development of collaborative, shareable custom workflows and reproducible data analysis for multiphoton calcium imaging data enabling easy collaboration between researchers. NeuroWRAP implements an approach to evaluate the sensitivity and robustness of the configured pipelines. When this sensitivity analysis is applied to a crucial step of image analysis, cell segmentation, we find a substantial difference between two popular workflows, CaImAn and Suite2p. NeuroWRAP harnesses this difference by introducing consensus analysis, utilizing two workflows in conjunction to significantly increase the trustworthiness and robustness of cell segmentation results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"17 ","pages":"1082111"},"PeriodicalIF":4.6000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2023.1082111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiphoton calcium imaging is one of the most powerful tools in modern neuroscience. However, multiphoton data require significant pre-processing of images and post-processing of extracted signals. As a result, many algorithms and pipelines have been developed for the analysis of multiphoton data, particularly two-photon imaging data. Most current studies use one of several algorithms and pipelines that are published and publicly available, and add customized upstream and downstream analysis elements to fit the needs of individual researchers. The vast differences in algorithm choices, parameter settings, pipeline composition, and data sources combine to make collaboration difficult, and raise questions about the reproducibility and robustness of experimental results. We present our solution, called NeuroWRAP (www.neurowrap.org), which is a tool that wraps multiple published algorithms together, and enables integration of custom algorithms. It enables development of collaborative, shareable custom workflows and reproducible data analysis for multiphoton calcium imaging data enabling easy collaboration between researchers. NeuroWRAP implements an approach to evaluate the sensitivity and robustness of the configured pipelines. When this sensitivity analysis is applied to a crucial step of image analysis, cell segmentation, we find a substantial difference between two popular workflows, CaImAn and Suite2p. NeuroWRAP harnesses this difference by introducing consensus analysis, utilizing two workflows in conjunction to significantly increase the trustworthiness and robustness of cell segmentation results.

Abstract Image

Abstract Image

Abstract Image

NeuroWRAP:集成、验证和共享神经数据分析工作流程。
多光子钙成像是现代神经科学中最强大的工具之一。然而,多光子数据需要对图像进行显著的预处理和对提取的信号进行后处理。因此,已经开发了许多算法和管道来分析多光子数据,特别是双光子成像数据。目前的大多数研究都使用已发表和公开的几种算法和管道中的一种,并添加定制的上游和下游分析元素,以满足个别研究人员的需求。算法选择、参数设置、管道组成和数据源方面的巨大差异使协作变得困难,并对实验结果的再现性和稳健性提出了质疑。我们提出了我们的解决方案,名为NeuroWRAP(www.neurowrappe.org),这是一种将多个已发布的算法封装在一起的工具,并能够集成自定义算法。它能够为多光子钙成像数据开发协作、可共享的自定义工作流程和可重复的数据分析,从而使研究人员之间能够轻松协作。NeuroWRAP实现了一种评估配置管道的灵敏度和稳健性的方法。当将这种灵敏度分析应用于图像分析的关键步骤细胞分割时,我们发现两种流行的工作流程CaImAn和Suite2p之间存在显著差异。NeuroWRAP通过引入一致性分析来利用这种差异,将两个工作流程结合起来,显著提高细胞分割结果的可信度和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信