Top-down design of protein architectures with reinforcement learning

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Isaac D. Lutz, Shunzhi Wang, Christoffer Norn, Alexis Courbet, Andrew J. Borst, Yan Ting Zhao, Annie Dosey, Longxing Cao, Jinwei Xu, Elizabeth M. Leaf, Catherine Treichel, Patrisia Litvicov, Zhe Li, Alexander D. Goodson, Paula Rivera-Sánchez, Ana-Maria Bratovianu, Minkyung Baek, Neil P. King, Hannele Ruohola-Baker, David Baker
{"title":"Top-down design of protein architectures with reinforcement learning","authors":"Isaac D. Lutz,&nbsp;Shunzhi Wang,&nbsp;Christoffer Norn,&nbsp;Alexis Courbet,&nbsp;Andrew J. Borst,&nbsp;Yan Ting Zhao,&nbsp;Annie Dosey,&nbsp;Longxing Cao,&nbsp;Jinwei Xu,&nbsp;Elizabeth M. Leaf,&nbsp;Catherine Treichel,&nbsp;Patrisia Litvicov,&nbsp;Zhe Li,&nbsp;Alexander D. Goodson,&nbsp;Paula Rivera-Sánchez,&nbsp;Ana-Maria Bratovianu,&nbsp;Minkyung Baek,&nbsp;Neil P. King,&nbsp;Hannele Ruohola-Baker,&nbsp;David Baker","doi":"10.1126/science.adf6591","DOIUrl":null,"url":null,"abstract":"<div >As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a “top-down” reinforcement learning–based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo–electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.</div>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adf6591","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 14

Abstract

As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a “top-down” reinforcement learning–based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo–electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.
利用强化学习自顶向下设计蛋白质结构
由于进化选择的结果,自然形成的蛋白质组装体的亚单位往往以很大的形状互补性组合在一起,从而产生了目前的设计方法无法实现的最佳功能架构。我们介绍了一种基于强化学习的 "自上而下 "设计方法,该方法利用蒙特卡洛树搜索,在整体结构和特定功能约束条件下对蛋白质构象进行采样,从而解决了这一问题。设计出的盘状纳米孔和超小型二十面体的冷冻电镜结构与计算模型非常接近。二十面体能够以极高密度显示免疫原和信号分子,从而增强疫苗反应和血管生成诱导。我们的方法能够自上而下地设计出具有所需系统特性的复杂蛋白质纳米材料,并证明了强化学习在蛋白质设计中的强大作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信