Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food

IF 23.6 Q1 FOOD SCIENCE & TECHNOLOGY
Manyun Yang, Xiaobo Liu, Yaguang Luo, Arne J. Pearlstein, Shilong Wang, Hayden Dillow, Kevin Reed, Zhen Jia, Arnav Sharma, Bin Zhou, Dan Pearlstein, Hengyong Yu, Boce Zhang
{"title":"Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food","authors":"Manyun Yang, Xiaobo Liu, Yaguang Luo, Arne J. Pearlstein, Shilong Wang, Hayden Dillow, Kevin Reed, Zhen Jia, Arnav Sharma, Bin Zhou, Dan Pearlstein, Hengyong Yu, Boce Zhang","doi":"10.1038/s43016-021-00229-5","DOIUrl":null,"url":null,"abstract":"Fast and simultaneous identification of multiple viable pathogens on food is critical to public health. Here we report a pathogen identification system using a paper chromogenic array (PCA) enabled by machine learning. The PCA consists of a paper substrate impregnated with 23 chromogenic dyes and dye combinations, which undergo colour changes on exposure to volatile organic compounds emitted by pathogens of interest. These colour changes are digitized and used to train a multi-layer neural network (NN), endowing it with high-accuracy (91–95%) strain-specific pathogen identification and quantification capabilities. The trained PCA–NN system can distinguish between viable Escherichia coli, E. coli O157:H7 and other viable pathogens, and can simultaneously identify both E. coli O157:H7 and Listeria monocytogenes on fresh-cut romaine lettuce, which represents a realistic and complex environment. This approach has the potential to advance non-destructive pathogen detection and identification on food, without enrichment, culturing, incubation or other sample preparation steps. Fast and simultaneous identification of multiple viable pathogens on food is critical to public health. By integrating paper chromogenic arrays (PCAs) and machine learning, a system was developed to automatically recognize PCA patterns on multiplexed viable pathogens with strain-level specificity.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"2 2","pages":"110-117"},"PeriodicalIF":23.6000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s43016-021-00229-5","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-021-00229-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 34

Abstract

Fast and simultaneous identification of multiple viable pathogens on food is critical to public health. Here we report a pathogen identification system using a paper chromogenic array (PCA) enabled by machine learning. The PCA consists of a paper substrate impregnated with 23 chromogenic dyes and dye combinations, which undergo colour changes on exposure to volatile organic compounds emitted by pathogens of interest. These colour changes are digitized and used to train a multi-layer neural network (NN), endowing it with high-accuracy (91–95%) strain-specific pathogen identification and quantification capabilities. The trained PCA–NN system can distinguish between viable Escherichia coli, E. coli O157:H7 and other viable pathogens, and can simultaneously identify both E. coli O157:H7 and Listeria monocytogenes on fresh-cut romaine lettuce, which represents a realistic and complex environment. This approach has the potential to advance non-destructive pathogen detection and identification on food, without enrichment, culturing, incubation or other sample preparation steps. Fast and simultaneous identification of multiple viable pathogens on food is critical to public health. By integrating paper chromogenic arrays (PCAs) and machine learning, a system was developed to automatically recognize PCA patterns on multiplexed viable pathogens with strain-level specificity.

Abstract Image

通过机器学习对食品上的多重可存活病原体进行无损纸质色原阵列检测
快速、同步鉴定食品中的多种可存活病原体对公共卫生至关重要。在此,我们报告了一种使用机器学习技术的纸质显色阵列(PCA)病原体识别系统。纸质显色阵列由浸渍有 23 种显色染料和染料组合的纸质基底组成,当接触到相关病原体释放的挥发性有机化合物时,纸质基底会发生颜色变化。这些颜色变化被数字化并用于训练多层神经网络 (NN),使其具有高准确度(91-95%)的菌株特异性病原体识别和定量能力。训练有素的 PCA-NN 系统能够区分存活的大肠杆菌、大肠杆菌 O157:H7 和其他存活的病原体,并能同时识别鲜切莴苣上的大肠杆菌 O157:H7 和单核细胞增生李斯特菌,这代表了一种真实而复杂的环境。这种方法无需富集、培养、孵育或其他样品制备步骤,有望推动对食品的非破坏性病原体检测和鉴定。快速、同步鉴定食品中的多种可存活病原体对公共卫生至关重要。通过整合纸张色原阵列(PCA)和机器学习,我们开发出了一种系统,可自动识别多重可存活病原体的 PCA 模式,并具有菌株级特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信