{"title":"Stable decoding of working memory load through frequency bands.","authors":"Meyi Duleme, Stephane Perrey, Gerard Dray","doi":"10.1080/17588928.2022.2026312","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have shown that working memory modulates every frequency band's power in the human brain. Yet, the question of how the highly distributed working memory adapts to external demands remains unresolved. Here, we explored frequency band modulations underlying working memory load, taking executive control under account. We hypothesized that synchronizations underlying various cognitive functions may be sequenced in time to avoid interference and that transient modulation of decoding accuracy of task difficulty would vary with increasing difficulty. We recorded whole scalp EEG data from 12 healthy participants, while they performed a visuo-spatial n-back task with three conditions of increasing difficulty, after an initial learning phase. We analyzed evoked spectral perturbations and time-resolved decoding of individual synchronization. Surprisingly, our results provide evidence for persistent decoding above the level-of-chance (83.17% AUC) for combined frequency bands. In fact, the decoding accuracy was higher for the combined than for isolated frequency bands (AUC from 65.93% to 74.30%). However, in line with our hypothesis, frequency band clusters transiently emerged in parieto-occipital regions within two separate time windows for alpha-/beta-band (relative synchronization from approximately 200 to 600 ms) and for the delta-/theta-band (relative desynchronization from approximately 600 to 1000 ms). Overall, these findings highlight concurrent sustained and transient measurable features of working memory load. This could reflect the emergence of stability within and between functional networks of the complex working memory system. In turn, this process allows energy savings to cope with external demands.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":"14 1","pages":"1-14"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2022.2026312","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have shown that working memory modulates every frequency band's power in the human brain. Yet, the question of how the highly distributed working memory adapts to external demands remains unresolved. Here, we explored frequency band modulations underlying working memory load, taking executive control under account. We hypothesized that synchronizations underlying various cognitive functions may be sequenced in time to avoid interference and that transient modulation of decoding accuracy of task difficulty would vary with increasing difficulty. We recorded whole scalp EEG data from 12 healthy participants, while they performed a visuo-spatial n-back task with three conditions of increasing difficulty, after an initial learning phase. We analyzed evoked spectral perturbations and time-resolved decoding of individual synchronization. Surprisingly, our results provide evidence for persistent decoding above the level-of-chance (83.17% AUC) for combined frequency bands. In fact, the decoding accuracy was higher for the combined than for isolated frequency bands (AUC from 65.93% to 74.30%). However, in line with our hypothesis, frequency band clusters transiently emerged in parieto-occipital regions within two separate time windows for alpha-/beta-band (relative synchronization from approximately 200 to 600 ms) and for the delta-/theta-band (relative desynchronization from approximately 600 to 1000 ms). Overall, these findings highlight concurrent sustained and transient measurable features of working memory load. This could reflect the emergence of stability within and between functional networks of the complex working memory system. In turn, this process allows energy savings to cope with external demands.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.