Control-data separation and logical condition propagation for efficient inference on probabilistic programs

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ichiro Hasuo , Yuichiro Oyabu , Clovis Eberhart , Kohei Suenaga , Kenta Cho , Shin-ya Katsumata
{"title":"Control-data separation and logical condition propagation for efficient inference on probabilistic programs","authors":"Ichiro Hasuo ,&nbsp;Yuichiro Oyabu ,&nbsp;Clovis Eberhart ,&nbsp;Kohei Suenaga ,&nbsp;Kenta Cho ,&nbsp;Shin-ya Katsumata","doi":"10.1016/j.jlamp.2023.100922","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel sampling framework for probabilistic programs. The framework combines two recent ideas—<em>control-data separation</em> and <em>logical condition propagation</em>—in a nontrivial manner so that the two ideas boost the benefits of each other. We implemented our algorithm on top of Anglican. The experimental results demonstrate our algorithm's efficiency, especially for programs with while loops and rare observations.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"136 ","pages":"Article 100922"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220823000767","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel sampling framework for probabilistic programs. The framework combines two recent ideas—control-data separation and logical condition propagation—in a nontrivial manner so that the two ideas boost the benefits of each other. We implemented our algorithm on top of Anglican. The experimental results demonstrate our algorithm's efficiency, especially for programs with while loops and rare observations.

基于控制数据分离和逻辑条件传播的概率程序高效推理
我们提出了一种新的概率规划抽样框架。该框架以一种非凡的方式结合了两种最新的思想——控制-数据分离和逻辑条件传播,从而使这两种思想相互促进。我们在英国国教的基础上实现了我们的算法。实验结果证明了该算法的有效性,特别是对于具有while循环和罕见观测值的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Logical and Algebraic Methods in Programming
Journal of Logical and Algebraic Methods in Programming COMPUTER SCIENCE, THEORY & METHODS-LOGIC
CiteScore
2.60
自引率
22.20%
发文量
48
期刊介绍: The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信