Cascading-failure-resilient interconnection for interdependent power grid - Optical network

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. Farhan Habib , Francesco Musumeci , Massimo Tornatore , Biswanath Mukherjee
{"title":"Cascading-failure-resilient interconnection for interdependent power grid - Optical network","authors":"M. Farhan Habib ,&nbsp;Francesco Musumeci ,&nbsp;Massimo Tornatore ,&nbsp;Biswanath Mukherjee","doi":"10.1016/j.osn.2021.100632","DOIUrl":null,"url":null,"abstract":"<div><p><span>The interdependence between communication networks, e.g., an optical backbone network<span><span>, and power grids is a critical issue to take into account when designing and operating both systems. In fact, failures in one network may cause further failures in the other network and vice versa. This is because nodes in power grids (i.e., power generators, loads or interchange nodes) are controlled and managed by telecommunication equipment, which, in turn, rely on the electricity grid for their power supply. Therefore, failures occurring on a limited portion of one network can cascade multiple times between these two networks, and a robust “interdependency network” (i.e., consisting of the interconnections between nodes in the two networks) is needed. This paper investigates the problem of designing a resilient interconnection against interdependent cascading-failures in interdependent power grid - optical networks. We formalize, using an Integer </span>Linear Program, the new problem of </span></span><em>Power Grid - Optical Network Interconnection</em> (<em>PGON-I</em><span><span>), which consists in designing an interconnection between the power grid and the optical network that is resilient to cascading failures, i.e., avoids/reduces cascade. For this problem, we derive analytically upper and lower bounds on the number of interconnection links which ensure resilience against cascading failures initiated from a single node-failure. Starting from the analytical model, we develop a </span>heuristic algorithm to solve large instances of the problem. Our results show that the higher the difference between the number of nodes in the two networks, the more interconnection links are needed to ensure resilience against failures cascade.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"42 ","pages":"Article 100632"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000291","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

The interdependence between communication networks, e.g., an optical backbone network, and power grids is a critical issue to take into account when designing and operating both systems. In fact, failures in one network may cause further failures in the other network and vice versa. This is because nodes in power grids (i.e., power generators, loads or interchange nodes) are controlled and managed by telecommunication equipment, which, in turn, rely on the electricity grid for their power supply. Therefore, failures occurring on a limited portion of one network can cascade multiple times between these two networks, and a robust “interdependency network” (i.e., consisting of the interconnections between nodes in the two networks) is needed. This paper investigates the problem of designing a resilient interconnection against interdependent cascading-failures in interdependent power grid - optical networks. We formalize, using an Integer Linear Program, the new problem of Power Grid - Optical Network Interconnection (PGON-I), which consists in designing an interconnection between the power grid and the optical network that is resilient to cascading failures, i.e., avoids/reduces cascade. For this problem, we derive analytically upper and lower bounds on the number of interconnection links which ensure resilience against cascading failures initiated from a single node-failure. Starting from the analytical model, we develop a heuristic algorithm to solve large instances of the problem. Our results show that the higher the difference between the number of nodes in the two networks, the more interconnection links are needed to ensure resilience against failures cascade.

相互依赖电网的级联抗故障互连。光网络
通信网络(例如光骨干网络)和电网之间的相互依赖是设计和操作这两个系统时需要考虑的关键问题。实际上,一个网络中的故障可能会导致另一个网络中的进一步故障,反之亦然。这是因为电网中的节点(即发电机、负载或交换节点)是由电信设备控制和管理的,而电信设备又依赖电网提供电力。因此,在一个网络的有限部分上发生的故障可以在这两个网络之间级联多次,并且需要一个健壮的“相互依赖网络”(即由两个网络中节点之间的互连组成)。本文研究了在相互依赖的电网-光网络中,针对相互依赖的级联故障设计弹性互连的问题。我们使用整数线性规划形式化了电网-光网络互连(PGON-I)的新问题,该问题包括设计电网与光网络之间的互连,该互连对级联故障具有弹性,即避免/减少级联。对于这一问题,我们解析地导出了互连链路数量的上限和下限,以确保对单个节点故障引发的级联故障具有弹性。从分析模型出发,我们开发了一种启发式算法来解决问题的大实例。我们的研究结果表明,两个网络中节点数量之间的差异越大,就需要更多的互连链路来确保对故障级联的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信