Débora Gonçalves Bortolini , Giselle Maria Maciel , Isabela de Andrade Arruda Fernandes , Alessandra Cristina Pedro , Fernanda Thaís Vieira Rubio , Ivanise Guiherme Branco , Charles Windson Isidoro Haminiuk
{"title":"Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends","authors":"Débora Gonçalves Bortolini , Giselle Maria Maciel , Isabela de Andrade Arruda Fernandes , Alessandra Cristina Pedro , Fernanda Thaís Vieira Rubio , Ivanise Guiherme Branco , Charles Windson Isidoro Haminiuk","doi":"10.1016/j.fochms.2022.100134","DOIUrl":null,"url":null,"abstract":"<div><p>Functional foods show non-toxic bioactive compounds that offer health benefits beyond their nutritional value and beneficially modulate one or more target functions in the body. In recent decades, there has been an increase in the trend toward consuming foods rich in bioactive compounds, less industrialized, and with functional properties. Spirulina, a cyanobacterium considered blue microalgae, widely found in South America, stands out for its rich composition of bioactive compounds, as well as unsaturated fatty acids and essential amino acids, which contribute to basic human nutrition and can be used as a protein source for diets free from animal products. In addition, they have colored compounds, such as chlorophylls, carotenoids, phycocyanins, and phenolic compounds which can be used as corants and natural antioxidants. In this context, this review article presents the main biological activities of spirulina as an anticancer, neuroprotective, probiotic, anti-inflammatory, and immune system stimulating effect. Furthermore, an overview of the composition of spirulina, its potential for different applications in functional foods, and its emerging technologies are covered in this review.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"5 ","pages":"Article 100134"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566222000624/pdfft?md5=95afa4cd739a0c52a6a5a364483e7e4b&pid=1-s2.0-S2666566222000624-main.pdf","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 22
Abstract
Functional foods show non-toxic bioactive compounds that offer health benefits beyond their nutritional value and beneficially modulate one or more target functions in the body. In recent decades, there has been an increase in the trend toward consuming foods rich in bioactive compounds, less industrialized, and with functional properties. Spirulina, a cyanobacterium considered blue microalgae, widely found in South America, stands out for its rich composition of bioactive compounds, as well as unsaturated fatty acids and essential amino acids, which contribute to basic human nutrition and can be used as a protein source for diets free from animal products. In addition, they have colored compounds, such as chlorophylls, carotenoids, phycocyanins, and phenolic compounds which can be used as corants and natural antioxidants. In this context, this review article presents the main biological activities of spirulina as an anticancer, neuroprotective, probiotic, anti-inflammatory, and immune system stimulating effect. Furthermore, an overview of the composition of spirulina, its potential for different applications in functional foods, and its emerging technologies are covered in this review.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.