Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris

IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY
Haibin Wang , Chen Zong , Aimei Bai , Shuilin Yuan , Yan Li , Zhanghong Yu , Ruiping Tian , Tongkun Liu , Xilin Hou , Ying Li
{"title":"Transcriptome sequencing and gas chromatography–mass spectrometry analyses provide insights into β-caryophyllene biosynthesis in Brassica campestris","authors":"Haibin Wang ,&nbsp;Chen Zong ,&nbsp;Aimei Bai ,&nbsp;Shuilin Yuan ,&nbsp;Yan Li ,&nbsp;Zhanghong Yu ,&nbsp;Ruiping Tian ,&nbsp;Tongkun Liu ,&nbsp;Xilin Hou ,&nbsp;Ying Li","doi":"10.1016/j.fochms.2022.100129","DOIUrl":null,"url":null,"abstract":"<div><p>Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) combined with transcriptome analysis was used to study the mechanism of volatile organic compound formation. A total of 26 volatile organic compounds were identified in two NHCC cultivars ‘SZQ’ and ‘XQC’ and their F1 hybrids. Among these, sesquiterpene β-caryophyllene was identified only in ‘XQC’ and F1. Five genes encoding caryophyllene synthase were identified. The candidate β-caryophyllene synthase genes <em>BcTPSa11</em> and <em>BcTPSa21</em> had high expression levels only in ‘XQC’ and F1. In addition, several transcription factors of MYB-related, MYB, bHLH, and AP2/ERF families were identified by co-expression, suggesting that they regulate β-caryophyllene biosynthesis. Our results provide a molecular basis for sesquiterpene biosynthesis as well as insights into the regulatory network of β-caryophyllene in NHCC.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"5 ","pages":"Article 100129"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566222000570/pdfft?md5=301b79e6de7c8873abe0c0352b669988&pid=1-s2.0-S2666566222000570-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Sesquiterpenes are important defensive secondary metabolites and aroma components. However, limited information is available on the mechanism of sesquiterpene formation and composition in the non-heading Chinese cabbage (NHCC) leaf. Therefore, headspace solid-phase microextraction/gas chromatography–mass spectrometry (HS-SPME/GC–MS) combined with transcriptome analysis was used to study the mechanism of volatile organic compound formation. A total of 26 volatile organic compounds were identified in two NHCC cultivars ‘SZQ’ and ‘XQC’ and their F1 hybrids. Among these, sesquiterpene β-caryophyllene was identified only in ‘XQC’ and F1. Five genes encoding caryophyllene synthase were identified. The candidate β-caryophyllene synthase genes BcTPSa11 and BcTPSa21 had high expression levels only in ‘XQC’ and F1. In addition, several transcription factors of MYB-related, MYB, bHLH, and AP2/ERF families were identified by co-expression, suggesting that they regulate β-caryophyllene biosynthesis. Our results provide a molecular basis for sesquiterpene biosynthesis as well as insights into the regulatory network of β-caryophyllene in NHCC.

转录组测序和气相色谱-质谱分析提供了油菜β-石竹烯生物合成的见解
倍半萜是重要的防御性次生代谢产物和香气成分。然而,关于倍半萜在不结籽大白菜(NHCC)叶片中形成和组成的机理研究有限。因此,采用顶空固相微萃取/气相色谱-质谱法(HS-SPME/ GC-MS)结合转录组分析对挥发性有机物的形成机制进行研究。从2个NHCC品种SZQ和XQC及其F1杂种中共鉴定出26种挥发性有机物。其中倍半萜β-石竹烯仅在‘XQC’和F1中得到鉴定。鉴定出5个编码石竹烯合成酶的基因。候选β-石竹烯合成酶基因BcTPSa11和BcTPSa21仅在‘XQC’和F1中高表达。此外,通过共表达鉴定了MYB相关、MYB、bHLH和AP2/ERF家族的几个转录因子,表明它们调节β-石竹烯的生物合成。我们的研究结果为倍半萜的生物合成提供了分子基础,并揭示了NHCC中β-石竹烯的调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry Molecular Sciences
Food Chemistry Molecular Sciences Agricultural and Biological Sciences-Food Science
CiteScore
6.00
自引率
0.00%
发文量
83
审稿时长
82 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信