{"title":"Computational Offloading for MEC Networks with Energy Harvesting: A Hierarchical Multi-Agent Reinforcement Learning Approach","authors":"Yu Sun, Qijie He","doi":"10.3390/electronics12061304","DOIUrl":null,"url":null,"abstract":"Multi-access edge computing (MEC) is a novel computing paradigm that leverages nearby MEC servers to augment the computational capabilities of users with limited computational resources. In this paper, we investigate the computational offloading problem in multi-user multi-server MEC systems with energy harvesting, aiming to minimize both system latency and energy consumption by optimizing task offload location selection and task offload ratio.We propose a hierarchical computational offloading strategy based on multi-agent reinforcement learning (MARL). The proposed strategy decomposes the computational offloading problem into two sub-problems: a high-level task offloading location selection problem and a low-level task offloading ratio problem. The complexity of the problem is reduced by decoupling. To address these sub-problems, we propose a computational offloading framework based on multi-agent proximal policy optimization (MAPPO), where each agent generates actions based on its observed private state to avoid the problem of action space explosion due to the increasing number of user devices. Simulation results show that the proposed HDMAPPO strategy outperforms other baseline algorithms in terms of average task latency, energy consumption, and discard rate.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"88 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics12061304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Multi-access edge computing (MEC) is a novel computing paradigm that leverages nearby MEC servers to augment the computational capabilities of users with limited computational resources. In this paper, we investigate the computational offloading problem in multi-user multi-server MEC systems with energy harvesting, aiming to minimize both system latency and energy consumption by optimizing task offload location selection and task offload ratio.We propose a hierarchical computational offloading strategy based on multi-agent reinforcement learning (MARL). The proposed strategy decomposes the computational offloading problem into two sub-problems: a high-level task offloading location selection problem and a low-level task offloading ratio problem. The complexity of the problem is reduced by decoupling. To address these sub-problems, we propose a computational offloading framework based on multi-agent proximal policy optimization (MAPPO), where each agent generates actions based on its observed private state to avoid the problem of action space explosion due to the increasing number of user devices. Simulation results show that the proposed HDMAPPO strategy outperforms other baseline algorithms in terms of average task latency, energy consumption, and discard rate.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.