Chemical scissor–mediated structural editing of layered transition metal carbides

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2023-03-16 DOI:10.1126/science.add5901
Haoming Ding, Youbing Li, Mian Li, Ke Chen, Kun Liang, Guoxin Chen, Jun Lu, Justinas Palisaitis, Per O. Å. Persson, Per Eklund, Lars Hultman, Shiyu Du, Zhifang Chai, Yury Gogotsi, Qing Huang
{"title":"Chemical scissor–mediated structural editing of layered transition metal carbides","authors":"Haoming Ding,&nbsp;Youbing Li,&nbsp;Mian Li,&nbsp;Ke Chen,&nbsp;Kun Liang,&nbsp;Guoxin Chen,&nbsp;Jun Lu,&nbsp;Justinas Palisaitis,&nbsp;Per O. Å. Persson,&nbsp;Per Eklund,&nbsp;Lars Hultman,&nbsp;Shiyu Du,&nbsp;Zhifang Chai,&nbsp;Yury Gogotsi,&nbsp;Qing Huang","doi":"10.1126/science.add5901","DOIUrl":null,"url":null,"abstract":"<div >Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non–van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"379 6637","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.add5901","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 38

Abstract

Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non–van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.
化学剪刀介导的层状过渡金属碳化物结构编辑
夹层材料具有独特的性能,是重要的二维(2D)材料的前体。然而,非范德华结构的插层可以扩大二维材料系列,但却很难实现。我们报告了层状碳化物(MAX 相)及其二维衍生物(MXenes)的结构编辑方案。通过化学剪刀和插层剂分别介导的间隙打开和物种插层阶段,产生了一大批具有非常规元素和结构的 MAX 相,以及具有多功能终端的 MXenes。用金属剪刀去除 MXenes 中的端子,然后用原子插层缝合二维碳化物纳米片,从而重建了 MAX 相和金属插层二维碳化物系列,这两种方法都可能推动从能源到印刷电子等领域的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信