Yang Bu, Yue Jiang, Saeko Kawano, B. S. T. Tam, Sheng Ni, Liying Lin, O. Tabata, T. Tsuchiya, X. Wang, M. Wong
{"title":"A Planar Single-Actuator Bi-Stable Mechanical Latch as an Electrical Switch","authors":"Yang Bu, Yue Jiang, Saeko Kawano, B. S. T. Tam, Sheng Ni, Liying Lin, O. Tabata, T. Tsuchiya, X. Wang, M. Wong","doi":"10.1109/MEMS46641.2020.9056413","DOIUrl":null,"url":null,"abstract":"A micro-fabricated planar bi-stable mechanical latch is demonstrated and presently reported. The compact size of the bi-stable mechanism is achieved by enclosing an anchored latch groove in the center of other movable structures. Driven using a single actuator, the device can be switched mechanically between two stable states by applying respective setting and resetting voltage of 10.3 V and 9.5 V. Exhibiting good durability and promising potential for applications demanding micro-switches, the device was demonstrated as an electrical switch to control a light-emitting diode.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"42 1","pages":"493-496"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A micro-fabricated planar bi-stable mechanical latch is demonstrated and presently reported. The compact size of the bi-stable mechanism is achieved by enclosing an anchored latch groove in the center of other movable structures. Driven using a single actuator, the device can be switched mechanically between two stable states by applying respective setting and resetting voltage of 10.3 V and 9.5 V. Exhibiting good durability and promising potential for applications demanding micro-switches, the device was demonstrated as an electrical switch to control a light-emitting diode.