Sheng-Ren Chiu, Chung-Yang Sue, Lu-Pu Liao, Li-Tao Teng, Y. Hsu, Y. Su
{"title":"A fully integrated circuit for MEMS vibrating gyroscope using standard 0.25um CMOS process","authors":"Sheng-Ren Chiu, Chung-Yang Sue, Lu-Pu Liao, Li-Tao Teng, Y. Hsu, Y. Su","doi":"10.1109/IMPACT.2011.6117258","DOIUrl":null,"url":null,"abstract":"This paper presents an all-in-one fully integrated circuit solution for a vibrating micro-electromechanical gyroscope system using standard 0.25um 1P5M low voltage CMOS process. The analog parts of the system include a trans-impedance amplifier (TIA) with adaptive gain control (AGC) for the resonator driving loop, a sigma-delta modulator with gain/offset trimming function for the Coriolis signal read-out and a modified all PMOS charge pump for the high DC voltage. The digital signal processing parts include a trimming/control logic circuit and an I2C interface. SOG-bulk micromachining and deep reactive ion etching (DRIE) are adopted to fabricate the gyroscope sensor element with high aspect-ratio sensing structure and high yield. The experimental results indicate that the noise floor achieves 0.051° / s/ √Hz and the scale factor is 7mV/ °/s of the proposed two chip MEMS gyroscope system.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"50 1","pages":"315-318"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents an all-in-one fully integrated circuit solution for a vibrating micro-electromechanical gyroscope system using standard 0.25um 1P5M low voltage CMOS process. The analog parts of the system include a trans-impedance amplifier (TIA) with adaptive gain control (AGC) for the resonator driving loop, a sigma-delta modulator with gain/offset trimming function for the Coriolis signal read-out and a modified all PMOS charge pump for the high DC voltage. The digital signal processing parts include a trimming/control logic circuit and an I2C interface. SOG-bulk micromachining and deep reactive ion etching (DRIE) are adopted to fabricate the gyroscope sensor element with high aspect-ratio sensing structure and high yield. The experimental results indicate that the noise floor achieves 0.051° / s/ √Hz and the scale factor is 7mV/ °/s of the proposed two chip MEMS gyroscope system.