{"title":"Analog and RF circuits design and future devices interaction","authors":"A. Matsuzawa","doi":"10.1109/IEDM.2012.6479041","DOIUrl":null,"url":null,"abstract":"This paper reviews and discusses the recent progress of analog and RF circuits design and the future devices interaction, focusing on the millimeter wave RF circuits and ADCs. With the scaling of CMOS technology, fT and fmax are increased. Using an advanced CMOS process and techniques such as the negative capacitance, the gain flattening, the accurate impedance matching using transmission lines, and the injection locking, a 60 GHz CMOS transceiver is realized. It attains 16 Gbps data transmission with the 16 QAM method. A dynamic comparator using a dynamic pre-amplifier with capacitive digital offset voltage compensation realizes a small mismatch voltage, low noise, low power, and low voltage operation without any static current. Flash ADCs and SAR ADCs using dynamic comparators have progressed. The interpolation method can ease the gain requirement for OpAmp in pipelined ADCs. The interconnection structure should be considered to realize low loss transmission lines and high density and large capacitance ratio MOM capacitors.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"49 1","pages":"14.3.1-14.3.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper reviews and discusses the recent progress of analog and RF circuits design and the future devices interaction, focusing on the millimeter wave RF circuits and ADCs. With the scaling of CMOS technology, fT and fmax are increased. Using an advanced CMOS process and techniques such as the negative capacitance, the gain flattening, the accurate impedance matching using transmission lines, and the injection locking, a 60 GHz CMOS transceiver is realized. It attains 16 Gbps data transmission with the 16 QAM method. A dynamic comparator using a dynamic pre-amplifier with capacitive digital offset voltage compensation realizes a small mismatch voltage, low noise, low power, and low voltage operation without any static current. Flash ADCs and SAR ADCs using dynamic comparators have progressed. The interpolation method can ease the gain requirement for OpAmp in pipelined ADCs. The interconnection structure should be considered to realize low loss transmission lines and high density and large capacitance ratio MOM capacitors.