{"title":"Titania nanostructures fabricated through anodization of Ti6Al4V alloy","authors":"Yan Li, D. Ding, S. Bai, Ming Li, D. Mao","doi":"10.1109/ICEPT.2008.4607049","DOIUrl":null,"url":null,"abstract":"This work reports on the fabrication and thermal stability of self-organized titania nanostructures on Ti6Al4V alloy. Ti6Al4V sheets were anodized in 1 M NaH2PO4 containing 0.5 wt% HF. And the anodized sheets were heat-treated at different temperatures to test their thermal stability. SEM observations revealed that, for the two-phase Ti6Al4V alloy, there were two different kinds of nanostructures (nanotubes grown at alpha-phase region and inhomogeneous nanopores grown at beta-phase region) formed on the substrate surface. The nanotubes can withstand a high temperature of 650degC without collapsing but sinter to densification at 675-700degC.","PeriodicalId":6324,"journal":{"name":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","volume":"210 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2008.4607049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work reports on the fabrication and thermal stability of self-organized titania nanostructures on Ti6Al4V alloy. Ti6Al4V sheets were anodized in 1 M NaH2PO4 containing 0.5 wt% HF. And the anodized sheets were heat-treated at different temperatures to test their thermal stability. SEM observations revealed that, for the two-phase Ti6Al4V alloy, there were two different kinds of nanostructures (nanotubes grown at alpha-phase region and inhomogeneous nanopores grown at beta-phase region) formed on the substrate surface. The nanotubes can withstand a high temperature of 650degC without collapsing but sinter to densification at 675-700degC.