Evaluate breaking strength of thin silicon die by ball-on-ring microforce tests and finite element analysis

De-Shin Liu, Zi-Hau Chen, Chung-Yu Lee
{"title":"Evaluate breaking strength of thin silicon die by ball-on-ring microforce tests and finite element analysis","authors":"De-Shin Liu, Zi-Hau Chen, Chung-Yu Lee","doi":"10.1109/IMPACT.2011.6117265","DOIUrl":null,"url":null,"abstract":"Through Silicon Via Multi-Chip Packaging (TSV MCP) is the current important direction for advance packaging technique. TSV/MCP need to support with thin wafer so that the stacking dies could maintain the spacing limitation, however one failure die could cause whole packaging failure that could lead to lower the yield rate and increasing the manufacturing cost. To realize the relationship between the manufacturing condition and the thin wafer strength, specialized experimental methods and tools must be developed to carry out thin wafer breaking strain/stress. In this paper, newly developed Ball-On-Ring test were set up and carried out to measure the force-displacement relation of various wafer thickness. The results from the testing then coupled with finite element analysis to reverse finding the breaking stress/strain as a function of wafer thickness. The die strength limit from this research can further support the engineer to evaluate reliability performance of the TSV MCP.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"92 1","pages":"188-190"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Through Silicon Via Multi-Chip Packaging (TSV MCP) is the current important direction for advance packaging technique. TSV/MCP need to support with thin wafer so that the stacking dies could maintain the spacing limitation, however one failure die could cause whole packaging failure that could lead to lower the yield rate and increasing the manufacturing cost. To realize the relationship between the manufacturing condition and the thin wafer strength, specialized experimental methods and tools must be developed to carry out thin wafer breaking strain/stress. In this paper, newly developed Ball-On-Ring test were set up and carried out to measure the force-displacement relation of various wafer thickness. The results from the testing then coupled with finite element analysis to reverse finding the breaking stress/strain as a function of wafer thickness. The die strength limit from this research can further support the engineer to evaluate reliability performance of the TSV MCP.
通过球环微力试验和有限元分析对薄硅模的断裂强度进行评价
通硅多芯片封装(TSV MCP)是当前先进封装技术的重要发展方向。TSV/MCP需要支持薄晶圆,以便堆叠模具可以保持间距限制,但是一个失效的模具可能导致整个封装失效,从而导致成品率降低并增加制造成本。为了实现制造条件与薄晶片强度之间的关系,必须开发专门的实验方法和工具来进行薄晶片断裂应变/应力测试。本文建立并实施了新开发的球环试验,以测量不同晶圆厚度的力-位移关系。然后将测试结果与有限元分析相结合,以反向发现断裂应力/应变作为晶圆厚度的函数。研究所得的模具强度极限可以进一步支持工程师对TSV MCP的可靠性性能进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信