{"title":"A nonlinear robot joint friction compensation method including stick and sliding characteristics","authors":"Yanli Feng, Kecheng Zhang, Haoyu Li, Jingyu Wang","doi":"10.1108/ir-12-2022-0322","DOIUrl":null,"url":null,"abstract":"\nPurpose\nDue to dynamic model is the basis of realizing various robot control functions, and it determines the robot control performance to a large extent, this paper aims to improve the accuracy of dynamic model for n-Degree of Freedom (DOF) serial robot.\n\n\nDesign/methodology/approach\nThis paper exploits a combination of the link dynamical system and the friction model to create robot dynamic behaviors. A practical approach to identify the nonlinear joint friction parameters including the slip properties in sliding phase and the stick characteristics in presliding phase is presented. Afterward, an adaptive variable-step moving average method is proposed to effectively reduce the noise impact on the collected data. Furthermore, a radial basis function neural network-based friction estimator for varying loads is trained to compensate the nonlinear effects of load on friction during robot joint moving.\n\n\nFindings\nExperiment validations are carried out on all the joints of a 6-DOF industrial robot. The experimental results of joint torque estimation demonstrate that the proposed strategy significantly improves the accuracy of the robot dynamic model, and the prediction effect of the proposed method is better than that of existing methods.\n\n\nOriginality/value\nThe proposed method extends the robot dynamic model with friction compensation, which includes the nonlinear effects of joint stick motion, joint sliding motion and load attached to the end-effector.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-12-2022-0322","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Due to dynamic model is the basis of realizing various robot control functions, and it determines the robot control performance to a large extent, this paper aims to improve the accuracy of dynamic model for n-Degree of Freedom (DOF) serial robot.
Design/methodology/approach
This paper exploits a combination of the link dynamical system and the friction model to create robot dynamic behaviors. A practical approach to identify the nonlinear joint friction parameters including the slip properties in sliding phase and the stick characteristics in presliding phase is presented. Afterward, an adaptive variable-step moving average method is proposed to effectively reduce the noise impact on the collected data. Furthermore, a radial basis function neural network-based friction estimator for varying loads is trained to compensate the nonlinear effects of load on friction during robot joint moving.
Findings
Experiment validations are carried out on all the joints of a 6-DOF industrial robot. The experimental results of joint torque estimation demonstrate that the proposed strategy significantly improves the accuracy of the robot dynamic model, and the prediction effect of the proposed method is better than that of existing methods.
Originality/value
The proposed method extends the robot dynamic model with friction compensation, which includes the nonlinear effects of joint stick motion, joint sliding motion and load attached to the end-effector.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.