Pen-Sheng Lin, Ting-Wei Shen, Kai-Chieh Chang, W. Fang
{"title":"Monolithic Integration of Plasmonic Meta-Material Absorber with CMOS-MEMs Infrared Sensor for Responsivity Enhancement and Human Detection Application","authors":"Pen-Sheng Lin, Ting-Wei Shen, Kai-Chieh Chang, W. Fang","doi":"10.1109/MEMS46641.2020.9056382","DOIUrl":null,"url":null,"abstract":"This study monolithically integrates a metal-insulator-metal-based (MIM) plasmonic metamaterial absorber (PMA) with a thermoelectric (TE) infrared (IR) sensor using standard TSMC CMOS platform. The proposed design extends the strip-via releasing hole structure in [1] to further integrate MIM absorber with TE IR sensor. Such design exhibits three merits: (1) the line width requirement of MIM absorber is achieved by CMOS process, (2) the absorption peaks of MIM absorbers can be modulated by pattern designs in the epsilon-near-pole region, and (3) the MIM absorbers can be designed to broaden the absorption spectrum of IR sensor. In application, the absorption spectrum of IR sensor is designed within $8-14\\mu \\mathrm{m}$ in this study for human detection application. Measurement result demonstrates the integration of MIM absorber and IR sensor can achieve 21% responsivity improvement and the measured absorption spectrum matches with simulation.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"58 1","pages":"157-160"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This study monolithically integrates a metal-insulator-metal-based (MIM) plasmonic metamaterial absorber (PMA) with a thermoelectric (TE) infrared (IR) sensor using standard TSMC CMOS platform. The proposed design extends the strip-via releasing hole structure in [1] to further integrate MIM absorber with TE IR sensor. Such design exhibits three merits: (1) the line width requirement of MIM absorber is achieved by CMOS process, (2) the absorption peaks of MIM absorbers can be modulated by pattern designs in the epsilon-near-pole region, and (3) the MIM absorbers can be designed to broaden the absorption spectrum of IR sensor. In application, the absorption spectrum of IR sensor is designed within $8-14\mu \mathrm{m}$ in this study for human detection application. Measurement result demonstrates the integration of MIM absorber and IR sensor can achieve 21% responsivity improvement and the measured absorption spectrum matches with simulation.