PRELIMINARY DATA ANALYSIS IN HEALTHCARE MULTICENTRIC DATA MINING: A PRIVACY-PRESERVING DISTRIBUTED APPROACH

IF 0.7 Q3 EDUCATION & EDUCATIONAL RESEARCH
A. Damiani, C. Masciocchi, L. Boldrini, R. Gatta, N. Dinapoli, J. Lenkowicz, G. Chiloiro, M. Gambacorta, L. Tagliaferri, R. Autorino, M. Pagliara, M. Blasi, J. V. Soest, A. Dekker, V. Valentini
{"title":"PRELIMINARY DATA ANALYSIS IN HEALTHCARE MULTICENTRIC DATA MINING: A PRIVACY-PRESERVING DISTRIBUTED APPROACH","authors":"A. Damiani, C. Masciocchi, L. Boldrini, R. Gatta, N. Dinapoli, J. Lenkowicz, G. Chiloiro, M. Gambacorta, L. Tagliaferri, R. Autorino, M. Pagliara, M. Blasi, J. V. Soest, A. Dekker, V. Valentini","doi":"10.20368/1971-8829/1454","DOIUrl":null,"url":null,"abstract":"The new era of cognitive health care systems offers a large amount of patient data that can be used to develop prediction models and clinical decision support systems. In this frame, the multi-institutional approach is strongly encouraged in order to reach more numerous samples for data mining and more reliable statistics. For these purposes, shared ontologies need to be developed for data management to ensure database semantic coherence in accordance with the various centers’ ethical and legal policies. Therefore, we propose a privacy-preserving distributed approach as a preliminary data analysis tool to identify possible compliance issues and heterogeneity from the agreed multi-institutional research protocol before training a clinical prediction model. This kind of preliminary analysis appeared fast and reliable and its results corresponded to those obtained using the traditional centralized approach. A real time interactive dashboard has also been presented to show analysis results and make the workflow swifter and easier.","PeriodicalId":44748,"journal":{"name":"Journal of E-Learning and Knowledge Society","volume":"27 1","pages":"71-81"},"PeriodicalIF":0.7000,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of E-Learning and Knowledge Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20368/1971-8829/1454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 14

Abstract

The new era of cognitive health care systems offers a large amount of patient data that can be used to develop prediction models and clinical decision support systems. In this frame, the multi-institutional approach is strongly encouraged in order to reach more numerous samples for data mining and more reliable statistics. For these purposes, shared ontologies need to be developed for data management to ensure database semantic coherence in accordance with the various centers’ ethical and legal policies. Therefore, we propose a privacy-preserving distributed approach as a preliminary data analysis tool to identify possible compliance issues and heterogeneity from the agreed multi-institutional research protocol before training a clinical prediction model. This kind of preliminary analysis appeared fast and reliable and its results corresponded to those obtained using the traditional centralized approach. A real time interactive dashboard has also been presented to show analysis results and make the workflow swifter and easier.
医疗保健多中心数据挖掘中的初步数据分析:一种保护隐私的分布式方法
认知卫生保健系统的新时代提供了大量的患者数据,可用于开发预测模型和临床决策支持系统。在这个框架内,强烈鼓励采用多机构方法,以便获得更多的样本进行数据挖掘和更可靠的统计。出于这些目的,需要开发用于数据管理的共享本体,以确保数据库语义的一致性符合各个中心的道德和法律政策。因此,我们提出了一种保护隐私的分布式方法作为初步数据分析工具,在训练临床预测模型之前,从商定的多机构研究方案中识别可能的依从性问题和异质性。这种初步分析方法快速、可靠,结果与传统的集中式分析方法基本一致。还提供了一个实时交互式仪表板来显示分析结果,使工作流程更快捷、更容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of E-Learning and Knowledge Society
Journal of E-Learning and Knowledge Society EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊介绍: SIe-L , Italian e-Learning Association, is a non-profit organization who operates as a non-commercial entity to promote scientific research and testing best practices of e-Learning and Distance Education. SIe-L consider these subjects strategic for citizen and companies for their instruction and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信