Concept of Vector Multicomponent Physical Quantities, Models and Measurement Method

IF 0.2 Q4 INSTRUMENTS & INSTRUMENTATION
V. Nesterov
{"title":"Concept of Vector Multicomponent Physical Quantities, Models and Measurement Method","authors":"V. Nesterov","doi":"10.21122/2220-9506-2022-13-4-281-290","DOIUrl":null,"url":null,"abstract":"The paper presents a new view of vector physical quantities as multicomponent quantities. Each of the components of the mentioned multicomponent quantities can carry important and even unique information about the sources and causes of their occurrence. Looking at the vector quantity as the multicomponent quantity led to the need to form the corresponding conception. There are three positions of this conception in this paper, which are formulated as follows: vector multicomponent physical quantities are considered as functions of the set of their constituent information components; the communication functions of the specified information components in the models of multicomponent physical quantities are determined by the laws of vector algebra; information models of vector multicomponent physical quantities allow an alternative representation of information components depending on the selected coordinate system.The mathematical model of the vector multicomponent physical quantity is presented. This model is fundamental and directly follows from the positions of the conception formulated above. This model can be applied to describe multicomponent displacements and deformations that both simple and complex objects undergo. An example of the complex object can be the manipulator of the universal industrial robot. The space for modeling multicomponent displacements of simple objects was shown in the paper. Information models of vector multicomponent physical quantities allow one to alternatively represent informative components. And the task of constructing such models is complex and ambiguous. Therefore, the formal apparatus for the synthesis of such models, which is based on certain rules and conventions, was proposed in the paper. The theoretical foundations of the method of optical measurements of informative components of multicomponent displacements and deformations of simple objects, which involves the use of multidimensional test objects, are presented.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Devices and Methods of Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2220-9506-2022-13-4-281-290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a new view of vector physical quantities as multicomponent quantities. Each of the components of the mentioned multicomponent quantities can carry important and even unique information about the sources and causes of their occurrence. Looking at the vector quantity as the multicomponent quantity led to the need to form the corresponding conception. There are three positions of this conception in this paper, which are formulated as follows: vector multicomponent physical quantities are considered as functions of the set of their constituent information components; the communication functions of the specified information components in the models of multicomponent physical quantities are determined by the laws of vector algebra; information models of vector multicomponent physical quantities allow an alternative representation of information components depending on the selected coordinate system.The mathematical model of the vector multicomponent physical quantity is presented. This model is fundamental and directly follows from the positions of the conception formulated above. This model can be applied to describe multicomponent displacements and deformations that both simple and complex objects undergo. An example of the complex object can be the manipulator of the universal industrial robot. The space for modeling multicomponent displacements of simple objects was shown in the paper. Information models of vector multicomponent physical quantities allow one to alternatively represent informative components. And the task of constructing such models is complex and ambiguous. Therefore, the formal apparatus for the synthesis of such models, which is based on certain rules and conventions, was proposed in the paper. The theoretical foundations of the method of optical measurements of informative components of multicomponent displacements and deformations of simple objects, which involves the use of multidimensional test objects, are presented.
矢量多分量物理量的概念、模型和测量方法
本文提出了向量物理量作为多分量量的新观点。上述多组分量的每个组分都可以携带有关其发生的来源和原因的重要甚至独特的信息。将矢量视为多分量量导致需要形成相应的概念。本文对这一概念有三种立场,表述如下:将矢量多分量物理量视为其组成信息分量集合的函数;多分量物理量模型中指定信息分量的通信功能由向量代数定律决定;矢量多分量物理量的信息模型允许根据所选坐标系对信息分量进行替代表示。提出了矢量多分量物理量的数学模型。这个模型是基本的,直接遵循上述概念的立场。该模型可用于描述简单和复杂物体所经历的多分量位移和变形。通用工业机器人的机械手就是复杂物体的一个例子。给出了简单物体多分量位移建模的空间。矢量多分量物理量的信息模型允许人们交替地表示信息分量。而构建这种模型的任务既复杂又模棱两可。因此,本文提出了一种基于一定规则和惯例的模型综合形式装置。介绍了利用多维测试对象进行简单物体多分量位移和变形信息分量光学测量的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Devices and Methods of Measurements
Devices and Methods of Measurements INSTRUMENTS & INSTRUMENTATION-
自引率
25.00%
发文量
18
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信