Evaluation of the Magnet Breakaway Force Measurement Accuracy of the NT-800 Sensors for Early Detection of Defects of Their Manufacturing

IF 0.2 Q4 INSTRUMENTS & INSTRUMENTATION
A. Kutsepau, A. Kren, Y. V. Hnutsenka
{"title":"Evaluation of the Magnet Breakaway Force Measurement Accuracy of the NT-800 Sensors for Early Detection of Defects of Their Manufacturing","authors":"A. Kutsepau, A. Kren, Y. V. Hnutsenka","doi":"10.21122/2220-9506-2021-12-3-230-238","DOIUrl":null,"url":null,"abstract":"Сontrol of mechanical stresses formed with the deposition of nickel coatings plays an important role in the diagnosis of coatings’ technical condition. Large internal stresses can lead to cracking or flaking of coatings which is completely unacceptable for critical parts and assembly units used, for example, in space technology for which reliability is of paramount importance. An important aspect of internal stresses monitoring is the measurement error of the instruments used. The purpose of this work was to determine the characteristics of the device sensors, which make the assessment of their manufacturing possible at the preliminary stage of the measuring equipment assembling in order to maintain the required accuracy of subsequent measurements.In most cases the measurement error assessment is possible only after the equipment manufacture and calibration. In this paper it is proposed to evaluate the accuracy characteristics of device sensors based on the precision (repeatability and reproducibility) of the primary informative parameter recording. In the case of the NT-800 device that was developed at the Institute of Applied Physics of the National Academy of Sciences of Belarus the effect of precision characteristics deterioration on the eventual measurement error is demonstrated. Determining the precision parameters before establishing correlation dependences between the primary informative parameter and the measured characteristic is proposed in order to reject poorly manufactured sensors and reduce labor costs.In particular, measurements of the magnitude proportional to the magnetic breakaway force were carried out using the NT-800 device with nickel specimens simulating coatings with a thickness of 200 to 700 μm and a rolling value from 0 to 40 %. It was established that in the case of well-made sensors the variation coefficient calculated from the dispersion of repeatability is in the range 0.2–0.6 %, and the variation coefficient calculated from the dispersion of reproducibility does not exceed 0.9 %. In the case of a sensor with the sensitive element parameters worsened, the variation coefficient of repeatability and reproducibility were up by one and a half times. Deterioration of the precision characteristics resulted in significant changes in the readings of the calibrated instrument. Thus the absolute measurement error for a sensor with a poorly made sensitive element turned out to be approximately 3 times higher in the range of 200– 300 MPa than that for a sensor with good precision parameters.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Devices and Methods of Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2220-9506-2021-12-3-230-238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Сontrol of mechanical stresses formed with the deposition of nickel coatings plays an important role in the diagnosis of coatings’ technical condition. Large internal stresses can lead to cracking or flaking of coatings which is completely unacceptable for critical parts and assembly units used, for example, in space technology for which reliability is of paramount importance. An important aspect of internal stresses monitoring is the measurement error of the instruments used. The purpose of this work was to determine the characteristics of the device sensors, which make the assessment of their manufacturing possible at the preliminary stage of the measuring equipment assembling in order to maintain the required accuracy of subsequent measurements.In most cases the measurement error assessment is possible only after the equipment manufacture and calibration. In this paper it is proposed to evaluate the accuracy characteristics of device sensors based on the precision (repeatability and reproducibility) of the primary informative parameter recording. In the case of the NT-800 device that was developed at the Institute of Applied Physics of the National Academy of Sciences of Belarus the effect of precision characteristics deterioration on the eventual measurement error is demonstrated. Determining the precision parameters before establishing correlation dependences between the primary informative parameter and the measured characteristic is proposed in order to reject poorly manufactured sensors and reduce labor costs.In particular, measurements of the magnitude proportional to the magnetic breakaway force were carried out using the NT-800 device with nickel specimens simulating coatings with a thickness of 200 to 700 μm and a rolling value from 0 to 40 %. It was established that in the case of well-made sensors the variation coefficient calculated from the dispersion of repeatability is in the range 0.2–0.6 %, and the variation coefficient calculated from the dispersion of reproducibility does not exceed 0.9 %. In the case of a sensor with the sensitive element parameters worsened, the variation coefficient of repeatability and reproducibility were up by one and a half times. Deterioration of the precision characteristics resulted in significant changes in the readings of the calibrated instrument. Thus the absolute measurement error for a sensor with a poorly made sensitive element turned out to be approximately 3 times higher in the range of 200– 300 MPa than that for a sensor with good precision parameters.
NT-800型传感器磁分离力测量精度评价及其制造缺陷的早期检测
沉积镍镀层形成的机械应力Сontrol对镀层技术状况的诊断有重要作用。较大的内应力可能导致涂层开裂或剥落,这对于使用的关键部件和装配单元是完全不能接受的,例如在可靠性至关重要的空间技术中。内应力监测的一个重要方面是所使用仪器的测量误差。这项工作的目的是确定设备传感器的特性,这使得在测量设备组装的初步阶段对其制造进行评估成为可能,以便保持后续测量所需的精度。在大多数情况下,只有在设备制造和校准之后才能进行测量误差评估。本文提出了基于主要信息参数记录的精度(可重复性和再现性)来评价器件传感器的精度特性。以白俄罗斯国家科学院应用物理研究所研制的NT-800装置为例,说明了精度特性恶化对最终测量误差的影响。提出在建立主要信息参数与被测特性之间的相关依赖关系之前确定精度参数,以淘汰制造不良的传感器并降低人工成本。特别是,利用NT-800装置进行了与磁分离力成比例的测量,镍样品模拟了厚度为200 ~ 700 μm,轧制值为0 ~ 40%的涂层。结果表明,在制作精良的传感器中,由可重复性离散度计算出的变异系数在0.2 ~ 0.6%之间,由可重复性离散度计算出的变异系数不超过0.9%。在敏感元件参数恶化的情况下,传感器的重复性和再现性变异系数提高了1.5倍。精度特性的恶化导致校准仪器的读数发生重大变化。结果表明,在200 ~ 300 MPa范围内,敏感元件制作较差的传感器的绝对测量误差约为精度参数较好的传感器的3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Devices and Methods of Measurements
Devices and Methods of Measurements INSTRUMENTS & INSTRUMENTATION-
自引率
25.00%
发文量
18
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信