Ecosystem Microbiome Science.

IF 4.5 Q1 MICROBIOLOGY
mLife Pub Date : 2023-01-11 eCollection Date: 2023-03-01 DOI:10.1002/mlf2.12054
Yong-Guan Zhu, Dong Zhu, Matthias C Rillig, Yunfeng Yang, Haiyan Chu, Qing-Lin Chen, Josep Penuelas, Hui-Ling Cui, Michael Gillings
{"title":"Ecosystem Microbiome Science.","authors":"Yong-Guan Zhu, Dong Zhu, Matthias C Rillig, Yunfeng Yang, Haiyan Chu, Qing-Lin Chen, Josep Penuelas, Hui-Ling Cui, Michael Gillings","doi":"10.1002/mlf2.12054","DOIUrl":null,"url":null,"abstract":"<p><p>The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and functions performed by the microbiome and its dynamics at an ecosystem level. We propose that the theory and tools of ecosystem ecology be used to investigate the connectivity of microorganisms and their interactions with the biotic and abiotic environment within entire ecosystems and to examine their contributions to ecosystem services. Impacts of natural and anthropogenic stressors on ecosystems will likely cause cascading effects on the microbiome and lead to unpredictable outcomes, such as outbreaks of emerging infectious diseases or changes in mutualistic interactions. Despite enormous advances in microbial ecology, we are yet to study microbiomes of ecosystems as a whole. Doing so would establish a new framework for microbiome study: Ecosystem Microbiome Science. The advent and application of molecular and genomic technologies, together with data science and modeling, will accelerate progress in this field.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and functions performed by the microbiome and its dynamics at an ecosystem level. We propose that the theory and tools of ecosystem ecology be used to investigate the connectivity of microorganisms and their interactions with the biotic and abiotic environment within entire ecosystems and to examine their contributions to ecosystem services. Impacts of natural and anthropogenic stressors on ecosystems will likely cause cascading effects on the microbiome and lead to unpredictable outcomes, such as outbreaks of emerging infectious diseases or changes in mutualistic interactions. Despite enormous advances in microbial ecology, we are yet to study microbiomes of ecosystems as a whole. Doing so would establish a new framework for microbiome study: Ecosystem Microbiome Science. The advent and application of molecular and genomic technologies, together with data science and modeling, will accelerate progress in this field.

生态系统微生物组科学。
微生物组通过与复杂环境和其他生物的相互作用,为多种生态系统功能和服务做出了贡献。然而,迄今为止,大多数微生物组研究都是针对单个宿主或特定环境区划进行的。这极大地限制了对微生物组的过程和功能及其在生态系统层面的动态的全面了解。我们建议利用生态系统生态学的理论和工具来研究整个生态系统中微生物的连接性及其与生物和非生物环境的相互作用,并研究它们对生态系统服务的贡献。自然和人为压力因素对生态系统的影响很可能会对微生物组产生连带效应,并导致不可预测的结果,如爆发新的传染病或改变互利互动关系。尽管微生物生态学取得了巨大进步,但我们尚未对整个生态系统的微生物组进行研究。这样做将为微生物组研究建立一个新的框架:生态系统微生物组科学。分子和基因组技术的出现和应用,加上数据科学和建模,将加速这一领域的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信